
3.5 Type conversion: parallel reduction vs. com-
mon subexpression reduction

Belo et al. [8] used parallel reduction (defined in Figure 3.8) as the conversion relation
between types, while here I’ve used a structural conversion relation with common
subexpression reduction (CSR). In this section, I explain the need for a conversion
relation, why I’ve made the change, and how the two approaches differ.

First, why do we need a type conversion relation at all? Suppose we are trying
to prove preservation, in order to find syntactic type soundness. Consider the term
v1 e2, where v1 has the type x :T1 → T2 and e2 has the type T1. According to T App,
the type of v1 e2 is T2[e2/x ]. What happens when e2 −→ e �

2
? The syntactic type

system gives us v1 e2 : T2[e �2/x ]. To finish such a preservation proof, we must know
how T2[e2/x ] and T2[e �2/x ] relate. Intuitively, they ought to be inhabited by the same
values: since our evaluation semantics is deterministic, any value that satisfies the
checks in T2[e2/x ] should also satisfy the checks in T2[e �2/x ], since the latter type is
just a few extra steps along. We must modify the definition of our syntactic type
system to make it respect this equivalence in a formal way.

In λH in Chapter 2, we observe that while T2[e2/x ] may not reduce to T2[e �2/x ]—
types don’t reduce at all, in fact—we can relate them as subtypes of each other.
For this reason (among others), the λH system introduces a subtyping relation. But
it turns out that subtyping in that language introduces a vicious cycle (see Sec-
tion 5.2.2), forcing us to adopt a semantic approach to types soundness. I end up
showing that that T2[e2/x ] parallel reduces to T2[e �2/x ]. That is, we can take some
number of reduction steps in parallel (one for each free occurrence of x ) from T2[e2/x ]
to T2[e �2/x ]. I then show that the denotations of such types are equal (Lemma 2.3.17),
and then prove semantic type soundness for λH with respect to those denotations.
Note that Lemma 2.3.17 depends on a long Coq development showing cotermina-
tion: if e1 � e2, then e1 −→∗ v1 iff e2 −→∗ v2 such that v1 � v2 (Lemma A20 in
thy.v)—more on this later.

The situation for λH is somewhat unsatisfying. We set out to prove syntactic
type soundness and ended up proving semantic type soundness along the way. While
not a serious burden for a language as small as λH, having to use semantic tech-
niques throughout makes adding some features—polymorphism, state and other ef-
fects, concurrency—difficult. For example, a semantic proof of type soundness for FH

is very close to a proof of parametricity—must we prove parametricity while proving
type soundness?

In originally doing the work in this chapter (Belo et al. [8]), we observed that we
could get rid of subtyping and explicitly use the symmetric, transitive closure of paral-
lel reduction as the conversion relation. (Parallel reduction is reflexive by definition.)
Between that (and a few other changes), we found subtyping no longer necessary.
We still, however, needed cotermination for parallel reduction. We also explicitly
depended on substitutivity : if e1 � e2 and e �

1
� e �

2
then e1[e �1/x ] � e2[e �2/x ]. It turns
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Parallel term reduction e1 � e2

vi � v �
i

op (v1, ... , vn) � [[op]] (v �
1, ... , v

�
n)

EP ROp
e12 � e �12 v2 � v �

2

(λx :T . e12) v2 � e �12[v
�
2/x ]

EP RBeta

e � e � T2 � T �
2

(Λα. e)T2 � e �[T �
2/α]

EP RTBeta
v � v �

�T ⇒ T �l v � v � EP RRefl

T2 �= {x :T1 | e} T2 �= {y :{x :T1 | e} | e2} T1 � T �
1 T2 � T �

2 v � v �

�{x :T1 | e} ⇒ T2�l v � �T �
1 ⇒ T �

2�l v � EP RForget

T1 �= T2 T1 �= {x :T | e} T1 � T �
1 T2 � T �

2 e � e � v � v �

�T1 ⇒ {x :T2 | e}�l v � �T �
2 ⇒ {x :T �

2 | e �}�l (�T �
1 ⇒ T �

2�l v �)
EP RPreCheck

T � T � e � e � v � v �

�T ⇒ {x :T | e}�l v � �{x :T � | e �}, e �[v �/x ], v ��l EP RCheck

v � v �

�{x :T | e1}, true, v�l � v � EP ROK �{x :T | e1}, false, v�l � ⇑l EP RFail

x :T11 → T12 �= x :T21 → T22

T11 � T �
11 T12 � T �

12 T21 � T �
21 T22 � T �

22 v � v �

�x :T11 → T12 ⇒ x :T21 → T22�l v �
λx :T �

21. (�T �
12[�T �

21 ⇒ T �
11�l x/x ] ⇒ T �

22�l (v � (�T �
21 ⇒ T �

11�l x )))

EP RFun

∀α.T1 �= ∀α.T2 T1 � T �
1 T2 � T �

2 v � v �

�∀α.T1 ⇒ ∀α.T2�l v � Λα. (�T �
1 ⇒ T �

2�l (v � α))
EP RForall

e � e
EP Refl

T1 � T �
1 e12 � e �12

λx :T1. e12 � λx :T �
1. e

�
12

EP Abs
e1 � e �1 e2 � e �2

e1 e2 � e �1 e
�
2

EP App

e � e �

Λα. e � Λα. e �
EP TAbs

e1 � e �1 T2 � T �
2

e1 T2 � e �1 T
�
2

EP TApp

ei � e �i
op (e1, ... , en) � op (e �1, ... , e

�
n)

EP Op
T1 � T �

1 T2 � T �
2

�T1 ⇒ T2�l � �T �
1 ⇒ T �

2�l
EP Cast

T � T � e � e �

�T , e, k�l � �T �, e �, k�l EP Check
E [⇑l ] � ⇑l EP Blame

Parallel type reduction T1 � T2

T � T
EP TRefl

σ1 −→∗ σ2 T1 � T2

{x :T1 | σ1(e)} � {x :T2 | σ2(e)}
EP TRefine

T1 � T �
1 T2 � T �

2

x :T1 → T2 � x :T �
1 → T �

2

EP TFun
T � T �

∀α.T � ∀α.T � EP TForall

Figure 3.8: Parallel reduction
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Conversion σ1 −→∗ σ2 T1 ≡ T2

σ1 −→∗ σ2 ⇐⇒
dom(σ1) = dom(σ2) ∧
∀x ∈ dom(σ1). σ1(x ) −→∗ σ2(x ) ∧
∀α ∈ dom(σ1). σ1(α) = σ2(α)

α ≡ α
C Var

B ≡ B
C Base

σ1 −→∗ σ2 T1 ≡ T2

{x :T1 | σ1(e)} ≡ {x :T2 | σ2(e)}
C Refine

T1 ≡ T �
1 T2 ≡ T �

2

x :T1 → T2 ≡ x :T �
1 → T �

2

C Fun
T ≡ T �

∀α.T ≡ ∀α.T � C Forall

T2 ≡ T1

T1 ≡ T2
C Sym

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3
C Trans

Figure 3.9: Type conversion via common subexpression reduction

out that the proof of cotermination for λH also needs substitutivity, Lemma A3 in

thy.v, but we needed it for the substitution in types discussed above. Unfortunately,

parallel reduction in FH is not substitutive [60]. There are two counterexamples, both

in Figure 3.10.

Why doesn’t substitutivity hold in FH, when it did (so easily) in λH? There are

two reasons. First, the cast semantics of FH is much more complicated than that of

λH (six rules, as opposed to two). The FH rules depend on upon certain (syntactic)

equalities between types—both counterexamples in Figure 3.10 take advantage these

equalities to break substitutivity. Second, λH treats �x :T11 → T12 ⇒ x :T21 →
T22�l v as a value, while it is a redex in FH. This syntactic coincidence makes an

exact cotermination lemma possible. But as the second counterexample shows, in

FH it’s possible to have a substitution introduce a function proxy in e2 but not e1.
While I conjecture that e1 and e2 are contextually equivalent, they won’t yield values

that parallel reduce to each other. The rules that are the source of the problem for

substitutivity of parallel reduction are the EP R... rules, where a reduction in the

outer term happens at the same time as parallel reductions deep inside the term.

Note that both counterexamples make use of such rules.

The semantics of FH as published in ESOP 2011 are wrong. To fix them, I in-

troduced a simpler conversion relation, defined in Figure 3.9. Instead of allowing full

parallel reduction, I restrict convertible types to the CSR σ1 −→∗ σ2, i.e., substitu-

tions over the same set of term and type variables where (a) every term binding in

σ1 reduces to its corresponding binding in σ2, and (b) the type bindings are identi-

cal. My conversion relation is essentially the symmetric, transitive closure5 of parallel

reduction—without these reducing rules.

Phrasing the conversion relation in terms of CSR gives us substitutivity nearly

automatically, but cotermination remains an issue. In Conjecture 3.2.1, I suggest that

5I prove that my relation is reflexive in Lemma 3.2.3.
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Counterexample 1

Let T be a type with a free variable x .

e1 = �T ⇒ {y :T [5/x ] | true}�l 0
e2 = �T [5/x ] ⇒ {y :T [5/x ] | true}�l (�T ⇒ T [5/x ]�l 0)

e �1 = e �2 = 5

Observe that e �1 � e �2 (by EP Refl) and e1 � e2 (by EP RPreCheck) but
e1[5/x ] = �T [5/x ] ⇒ {y :T [5/x ] | true}�l 0 � �{y :T [5/x ] | true}, true, 0�l by EP RCheck, not
e2[5/x ].

Counterexample 2

Let T2 be a type with a free variable x .

e1 = �T1 → T2 ⇒ T1 → T2[5/x ]�l v
e2 = λy :T1. �T2 ⇒ T2[5/x ]�l (v (�T1 ⇒ T1�l y))

e �1 = e �2 = 5

Observe that e �1 � e �2 (by EP Refl) and e1 � e2 (by EP RFun). We have

e1[5/x ] = �T1 → T2[5/x ] ⇒ T1 → T2[5/x ]�l v � v [5/x ] by EP RRefl, not e2[5/x ].

Figure 3.10: Counterexamples to substitutivity of parallel reduction in FH

terms related by CSR coterminate at true; this is enough to prove type soundness and
parametricity of FH.

It is unclear if cotermination of parallel reduction holds in FH despite the absence
of substitutivity, i.e., whether if e1 � e2 then e1 −→∗ v1 iff e2 −→ v2 such that
v1 � v2. But it turns out that we can get by with a simpler property: cotermination
at true, rather than at arbitrary values. This property is a corollary of cotermination,
since true � true, but it is less likely to be interfered with by function proxies which
may be introduced as in the second counterexample. The intuition that leads me to
believe that cotermination at true holds for CSR is that in a well typed program,
any extra checks or function proxies introduced due to differing substitutions must
eventually disappear if the type of the final expression is Bool.

I believe that weak bisimulation is a promising proof technique: it’s syntactic
enough to avoid issues of circularity with typing, but semantic enough to relate terms
that are related by −→∗ reductions. I think weak bisimulations in particular are
appropriate, because of the need for −→∗ reductions on both sides of the relation.
The system as defined may make such a proof slightly difficult. Recalling the first
counterexample to substitutivity, we will need to have e1[e �1/x ] and e2[e �2/x ] in the
relation, but how can the relation “remember” that any checks that occur on one
side but not the other inevitably succeed? Introducing explicit tagging, as I do in
Chapter 4, is an attractive approach to solving this technical problem. In an explicitly
tagged manifest contract system, the only values inhabiting refinement types are
tagged as such, e.g., (v, {x :T | e}); the operational semantics then manages tags on
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values, tagging in E CheckOK and untagging in E Forget. Explicit tagging has
several advantages: it clarifies the staging of the operational semantics; it eliminates
the need for a T Forget rule; it gives value inversion directly (Lemma 3.2.11).
Finally, any proof of cotermination at true (Conjecture 3.2.1) must be careful to not
rely on type soundness, preservation, or substitution properties. Those theorems in
FH rely on Conjecture 3.2.1, so we can’t use them in its proof.

Finally: what kind of calculus wouldn’t have cotermination at true? In a non-
deterministic language, CSR may make one choice with σ1 and another with σ2.
Fortunately, FH is deterministic. In a deterministic language, cotermination at true
may not hold for CSR if the evaluation relation abuses equalities that are violated by
reduction. FH’s semantics does use equalities that are violated by term reduction; I
believe that “abuse” means using an equality on part of a term to determine which
step to take, but then ignoring that part of the term later in evaluation. Since FH

doesn’t do that, I am confident enough to conjecture that cotermination at true holds.
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