Stanford Artificial Intelligence Laboratory

Memo AIM-296
N gomputer Science Department /) £y, / = (/
eport No. STAN-CS-77-592 : ' - - 7.
b
ql‘ Lé/.} A BRACTICAL,F ORMAL SEMANTIC DEFINITION :
O § AND VERIF ICATION SYSTEM FOR TYPED I:I_S_g P et
T ' b Sy
C<: / } L\ | RobertFartwright, Jro~
: “ |
(7 Dockeral th |
N < TAN-¢5-7]-594, /
LT I
. AT M=~ (()
. 3 o 9 s
T L c A ” ey
,? N\b H { ¥ / A& PH (S8 oot N Q-qq \ VJ_Q,,_.
g™ Research sponsored by '

National Science Foundation 0CT 28 1977

and
Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT
Stanford University

- n..q"
)

///f)

 a e e e — —

SN

Stanford Artificial Intelligence Laboratory r/ December 1976
Memo AIM-296

Computer Science Department /
Report No. STAN-CS-77-592

A PRACTICAL FORMAL SEMANTIC DEFINITION
AND VERIFICATION SYSTEM FOR TYPED LISP

by
Robert Cartwright, Jr.

ABSTRACT

N

Despite the fact that computer scientists have developed a variety of formal methods for proving
computer programs correct, the formal verification of a non-trivial program is still a formidable
task. Moreover, the notion of proof is so imprecise in most existing verification systems, that the
validity of the proofs generated is open to question. With an aim toward rectifying these
problems, the research discussed in this dissertation attempts to accomplish the following
ob jectives:

l. To develop a programming language which is sufficiently powerful to express many
interesting algorithms clearly and succintly, yet simple enough to have a tractable formal
semantic definition.

2. To completely specify both proof theoretic and model theoretic formal semantics for this
language using the simplest possible abstractions.

8. To develop an interactive program verification system for the language which automatically
performs as many of the straightforward steps in a verification as possible. [continued next page)

This research was supported by the National Science Foundation under Contract NSF MCS765-
00327 and Advanced Research Projects Ag}ﬂ of the Department of Defense under ARPA Order
No. 2494, Contract MDA903-76-C-0206. T he views and conclusions contained in this document
are those of the author(s) and should not be interpreted as necessarily representing the official
polictes, either expressed or implied, of Stanford University or any agency of the U. S. Government.

Available from University Microfilm, P. O. Box 1346, Ann Arbor, Michigan 48106.

NSRS ——

e

WO 4% AT ’vfw".‘ﬂ/
‘ & iakde i
K2 $

The first part of the dissertation decribes the motivation for creating TYPED LISP, a variant of
PURE LISP including a flexible data type definition facility allowing the programmer to create
arbitrary recursive types. It is argued that a powerful data type definition facility not only
simplifies the task of writing programs, but reduces the complexity of the complementary task of
verifying those programs.

The second part of the thesis formally defines the semantics of TYPED LISP. Every function
symbol defined in a program P is identified with a function symbol in a first order predicate
calculus language Lp. Both a standard model Mp and a natural deduction system Np are defined
for the language Lp. In the standard model, each function symbol is interpreted by the least call-
by-value fixed-point of its defining equation. An informal meta-mathematical proof of the
consistency of the model Mp and the deductive system Np is given.

The final part of the dissertation describes an interactive verification system implementing
the natural deduction system Np.

The verification system includes:

1. A subgoaler which applies rules specified by the user to reduce the proof of the current goal
(or theorem) to the proof of one or more subgoals.

2. A powerful simplifier which automatically proves many non-trivial goals by utilizing user-
supplied lemmas as well as the rules of Np.

With a modest amount of user guidance, the verification system has proved a number of
interesting, non-trivial theorems including the total correctness of an algorithm which sorts by
successive merging, the total correctness of the McCarthy-Painter compiler for expressions, the
termination of a unification algorithm and the equivalence of an iterative algorithm and a
recursive algorithm for counting the leafs of a tree. Several of these proofs are included in an
appendix.

This thesis was submitted to the Department of Computer S.. - 4 the Committee on
Graduate Studies of Stanford University in partial fulfillment of the 1 irements for the degree
of Doctor of Philosophy.

mﬂu Sl i

PREFACE

This dissertation is not aimed at the casual reader. A shorter, less rigorous, and much more
readable account of the same research appears in the Proceedings of the T hird International
Colloquium on Automata, Languages, and Programming, (1976) Edinburgh Press, Edinburgh,
under the title "User-Defined Data Types as an Aid to Verifying LISP Programs.”

1 would like to thank my advisor David Luckham for his patient guidance and

encouragement, and my colleagues Derek Oppen, Nicholas Littlestone, and Richard
Weyhrauch for their helpful advice and criticism. Al the mistakes are mine.

TABLE OF CONTENTS

Chapter 1. INTRODUCTION ittt ittt oo oo a s oes s 1
Section 1. Research Objective. 1
Section' 2. "Previous Work:: 550 . o e e e 2
Section 8. Motivation for Creating TYPEDLISP. 4
Chapter 2. TYPEDLISP . . . v ssi dled s nmaianmsml oo aiain s aors 8
Section 1. Informal Descriptionof TYPEDLISP 8

1. Data TypeDefinitions00 e v oo v o anooeanaiosns 8

2 Eunction! el It ton s e e 10

L) BT 007 0 G 0 G0 0 O G O OB 00 0 Ol GG G G D P 11
Section 2. Stax of TYPEDLISP. ¢« o v v so s s 86 60 60 anasoa 13
Section 3. Semanticsof TYPEDLISP 20

1. Assertion Language Syntax 0.t e e e e e e . 20

2. Assertion LanguageSemantics.l o L. 23

3. The Semantics of Program Compeosition s
Chapter 3. A FORMAL DEDUCTION SYSTEM FOR TYPEDLISP 33
Section I. Introductoni. . . ¢ . . o o ve s e e v s e e e e e e e 33
Section 2. Ap: An Axiom System for the Standard Model. 33
Section 3. Completeness of the Axiom System Ap 11
Chapter ¢ A NATURAL DEDUCTION SYSTEM FOR TYPEDLISP. 43
Section I. IntrodUction’s . . . o . o G v b e s e s e e b e e e e e 43
Section 2. Expression SimplificationRules 44
Section 8. Formula Simplification Rules 47
Section 4. Goal Simplification Rules 49
Section 5. General Proof Rules. 49
Chapter 5. THE IMPLEMENTED VERIFICATIONSYSTEM 54
Section b, INTOAUCHON. © 0. . i v v le e sib e 6 0 ea b s s e e e 54
Section 2. Structureofthe Verifier. 54
Section 3. Demonstration of the Verifier 56
Section 4. Capabilities of the Verification System. 70
Chapter 6. FURTHERWORK . . . v i« i vo v v s v 5o o s st v o605 o3 7
Section 1. Improving the verification systemn 7
Section 2. Proving Theorems About Partial Functions 7
Section 8. Extending TYPEDLISP i iive n”

iv

it
[

REBPERENCGES: . . . o « ciuiic o a6 ni i aisi s snh s el e o e sl o et s 73
i APPENDIX I. SAMPLEPROOFS. A S 74
| Section 1. Example I: Iterative REVERSE 74
Section 2. Exampie 2: Total correctnessof FLATTEN. 77
i Section 3. Example 3: Total Correctness of Sorting by Merging 83
i Section 4. Example 4: McCarthy-Painter Compiler for Expressions 120
APPENDIX 2. TLVUSERSMANUAL., 137
? Section §. TLV Conventions v v vl oial v s vimv v s s 0m 5o o s s 137
Section2. TLV UserCommands00t teeenenen.. 140
BOution & URGION TEN. 0 .00 il cn bk e 5 s e s SRR Wt s 142
Section 4. TYPED LISP Syntax Error Messages 144
LoMINOET ERIOfS. . o 0 o b o v w a v tn o e e wiisl et ial e dee ok denist e etin e 144
T MRPE RIS . . v s s sk e R e e R ek e e 144
Section 5. TYPED LISP Verifier Command Errors. 147
APPENDIX 8. CALL-BY-VALUEFIXED-POINTS. 150
!
b
v

CHAPTER |

INTRODUCTION

1.1 Research Objective

During the past fifteen years, computer scientists have developed a variety of techniques for
proving programs correct. Unfortunately, none of these methods have reached the stage where
they are practical programming tools. The verification of typical production programs is still
far beyond the capability of existing verification systems.

Program verification researchers have frequently ignored practical considerations.
Many verification methods employ complex, counter-intuitive formalisms which confuse most
computer scientists and totally mystify ordinary programmers. Proofs in these systems tend to
be unnatural and very difficult to understand. There is little prospect that they will ever be
widely used in practical verification systems. Still other approaches to verification try to
reduce the correctness of a program to some other logical problem better suited to
mechanization (such as the validity of a single predicate calculus formula). Unfortunately,
mechanically "solving” the transformed problem for a non-trivial program is an unfeasibly
huge computation (infinite if the program is incorrect). Moreover, the transformed problem
often is so unintelligible to the programmer that it is virtually impossible for him to
solve--even with the aid of an interactive theorem prover.

Another distressing trend in program verification research has been a careless disregard
for firm logical foundations. The notion of proof is so vaguely treated in many verification
systems that the “correctness proofs” generated by the systems are of dubious value. Proving
a statement using such a system provides little assurance that the statement is true.
"Verifying” a program only reduces the correctness of the program to the correctness of the
verification system involved (including both the methodology and the proof-checking
programs). Computer scientists have been very lax in scrutinizing proposed verification
methods for logical flaws.

In the machine implementation of verification systems, there has been far too much
emphasis placed on total automation. Most implemented verification systems are almost
completely automatic, but none of these automatic systems can verify more that a very limited
set of simple programs. Despite intense research efforts, the performance of theorem proving
programs still does not approach the level required for automatic verification of non-trivial

L1 Research Ob jective Page 2

programs. Furthermore, there is no existing methodology which suggests that sufficiently
powerful theorem provers are on the horizon. Completely automatic verification fails to
exploit the programmer’s intuitive understanding of the programs he creates. Interactive
verification controlled by the programmer is a much more promising approach which has not
received sufficient attention from research< in the field.

With these criticisms in mind, my goal has been to develop logically sound, interactive
verification methods which show promise of having practical applications. In order for a
programmer to guide a verifier through a proof of program correctness, he must understand
the proof steps generated by the verifier. Consequently, the formal system used by an
interactive verifier should be as intuitively transparent and natural as possible. For this
reason, | selected first order predicate calculus with equality as the basis for my formal system.
Proofs in well-designed predicate calculus natural deduction systems (originally developed by
Gentzen) closely correspond to their informal counterparts. Furthermore, first order predicate
calculus is a very well understood formal system which has received near universal acceptance
among mathematicians as the appropriate system for formalizing mathematical theories.

Programming languages vary widely in their suitability for verification. Ideally a
programming language should permit the programmer to directly formalize the simplest, most
abstract description of the algorithm he wishes to implement. On the other hand the language
should have a brief, tractable formal definition so that we can be confident we have correctly
defined its semantics. Consequently, I chose PURE LISP as the basis for my verification
system’s programming language. PURE LISP is sufficiently powerful to concisely express
many complex algorithms, yet it has a simple formal definition. My initial idea was to
develop a first-order theory of LISP S-expressions analogous to Peano’s axioms for the
natural numbers, and then to define the semantics of LISP programs by treating each LISP
function as a new primitive function satisfying its defining equation. In other words, for each
function definition f(x},..xp) » 7(x|,..Xp) in a LISP program, where f(x|,...xp) is a LISP
expression, the axiom f{x|,...Xp) = 7(x},..Xp) is appended to the theory. Finally, I planned to
develop a natural deduction system for proving theorems in the theory and implement that
system in an interactive verifier.

1.2 Previous Work

To my knowledge, R. Boyer and] Moore [Boyer and Moore 1975; Moore 1975] are the only
other computer scientists who have pursued a similar line of research. Their ob jectives,
however, were quite different from mine. Their primary goal was to build a completely
automatic verifier which could prove as many simple theorems about LISP functions as
possible. To accomplish this ob jective, they defined the semantics of LISP using an approach
very similar to my own. First, they created a first-order theory of S-expressions built from
the single atom NIL. Then they defined the semantics of a LISP program P containing only
total functions by adding the axiom flx,, .., x) = *(x,, .., x) for each function definition

1.2 Previous Work Page 3

LTRSS SO LR {¢ ST xn) in P. Their verifier implements a simple set of proof rules derived
from these axioms, including rules which perform symbolic evaluation and induction on the
structure of the data. A set of heuristics determines which rule is applied at any given point
in an attempted proof.

The Boyer-Moore verifier can automatically prove a surprisingly large number of
simple theorems, clearly demonstrating the effectiveness of structural induction and symbolic
evaluation in program verification. As a special-purpose automatic theorem prover, Boyer
and Moore’s verifier is an impressive achievement. However, when judged as a PURE LISP
verification system, their work suffers from a number of shortcomings, including the
following:

1. Their verifier either proves a theorem totally mechanically or fails completely--there is no
provision for user guidance. Some very simple LISP theorems cannot be proved using
the Boyer-Moore verifier. A typical example of a trivial theorem the Boyer-Moore
verifier cannot prove is the following theorem about the standard LISP function
APPEND [Boyer 1975}

Vx [APPEND(x,APPEND(x,x)*APPEND(APPEND(x.x).x)]
where
APPEND(x,y) s IF NULL x THEN y ELSE CONS(CAR(x),APPEND(CDR(x).y)).

2. Their deductive system is not designed to prove arbitrary theorems about arbitrary

PURE LISP programs. Their induction rule, for example, is quite weak, being limited to
several restricted forms of step-wise induction on S-expressions (binary-trees).
Consequently, proofs requiring more general forms of induction (such as the correctness of
a merge sorting algorithm presented later in this paper) are beyond the capabilities of
their deductive system.

3. To simplify the process of generating proofs, Boyer and Moore limit the data domain of

their LISP subset to S-expressions constructed from the single atom NIL. Unfortunately,
theorems about LISP functions in this restricted domain are not necessarily true in the
more general domain of standard LISP S-expressions. For example, the statement

Yx[NILTREE(x)=T)
where
NILTREE(x) s NULL(x) OR
[NILTREE(CAR(x)) AND NILTREE(CDR(x))]

is a theorem in Boyer and Moore’s restricted data domain but obviously is not a theorem
in the domain of standard LISP S-expressions (any S-expression containing an atom
other than NIL is a counterexample).

—

1.2 Previous Work Page 4

4. Since Boyer and Moore's formal system assumes all user-defined functions are total, their
verification system only proves partial correctness (i.e. if any function in the program P is
not total, any theorem proved about P may not hold). They never defined the semantics
of partial functions or developed a method for proving that a particular function is total.

In contrast to Boyer and Moore, my ob jectives have been to create a consistent formal
deductive system capable of proving all theorems of practical interest about PURE LISP
programs, and to develop an interactive verifier to help the programmer construct arbitrary
proofs within this system. I have not been interested in building any heuristics into the
verifier which improve the automatic capabilites of the verifier, but occasionally prevent the
programmer from constructing the sequence of proof steps he wants.

1.3 Motivation for Creating TYPED LISP

Early in my research, I discovered that informal, straightforward proofs of simple theorems
about LISP functions did not translate directly into formal proofs in my envisioned
verification system. In fact, the seemingly trivial task of formally stating many simple
theorems turned out to be far more complicated than I anticipated. Consider the ubiquitous
sample theorem which asserts that the standard LISP function REVERSE has the property
that REVERSEeREVERSE is the identity function. The obvious formal statement of this
theorem is:

YX[REVERSE(REVERSE(x))«x].

Unfortunately, this formulation of the theorem is unsatisfactory, because it is false (any atom
other that NIL is a counterexample). REVERSE is well-defined only for S-expressions
which represent linear lists using the standard encoding. In order to correctly state the
theorem, we must define an auxiliary boolean LISP function LLIST which is a characteristic
function for the subset of S-expressions which represent linear lists. Using LLIST, the
correct statement of the theorem is:

Vx[LLIST(x) > REVERSE(REVERSE(x))=x].

The proofs of simple theorems about LISP functions within a first order theory of
S-expressions are even more cumbersome. The most concise, natural description of a typical
LISP function is not expressed in terms of how it manipulates S-expressions, but in terms of
how it operates on some abstract data types which are represented as S-expressions.
Unfortunately, the only way to describe LISP functions in a first order theory of
S-expressions is in terms of how they affect S-expressions. Proofs which deal with abstract
type representations rather than the abstract types themselves have two very serious
drawbacks:

1.3 Motivation for Creating TYPED LISP Page 5

1. Many proof steps must be devoted to checking the correctness of code which encodes or
decodes the abstract types as concrete representations.

2. Inductive proofs must usc induction on the structure of the representations rather than
the structure of the abstract types.

As an illustration, consider the following trivial theorem expressing a simple property of the
LISP function APPEND when applied to linear-lists of atoms (henceforth called atom-lists):

Vx ¢ atom-lists [APPEND(x,NIL) = x]
where:
APPEND(x,y) =
IF NULL(x) THEN y ELSE CONS(CAR(x),APPEND(CDR(x)y)) .

The proof of this theorem is extremely easy in the theory of atom-lists. We merely appiy
induction on the structure of x. The base step, x=NIL, is trivial:

APPEND(x,NIL) « APPEND(NILNIL) = NIL

by symbolic evaluation. For the induction step, we must show that for any atom-list v, the
statement:

Yu ¢ atoms [APPEND(CONS(u,v),NIL) = CONS(u,v)]
follows from the induction hypothesis:

APPEND(vNIL) = v.
But, symbolic evaluation reduces:

Yu ¢ atoms [APPEND(CONS(u,v)NIL) = CONS(u,v)]
to:
Yu ¢ atoms [CONS(u,APPEND(v,NIL)) = CONS(u,v)]

which is an immediate consequence of the induction hypothesis and the substitution of equals
for equals. Q. E.D.

The proof of the same theorem in the theory of S-expressions is less straightforward.
First, in order to correctly state the theorem in terms of S-expressions, we must define a
boolean-valued function ATOMLIST which is a characteristic function for the set of
S-expressions which represent linear-lists of atoms:

1.3 Motivation for Creating TYPED LISP Page 6

ATOMLIST(x) = IF NULL(x) THEN T
ELSE IF ATOM(x) THEN NIL
ELSE ATOM(CAR(x), AND ATOMLIST(CDR(x))

Using this definition, the theorem can be w -itten:
Vx ¢ S-expressions [ATOMLIST(x) > APPEND(x,NIL) = x] .

As before, the proof of the theorem proceeds by induction on the structure of x. The base
step, X e atoms, splits into two cases: x=NIL and x«NIL. The first case is identical to the base
step of the atom-list proof. In the second case, x«NIL, symbolic evaluatior reduces:

ATOMLIST(x)= T > APPEND(x,NIL) = x
to:
NIL=T > APPEND(x,NIL) = x

which is an immediate consequence of the axiom NIL«T. For the induction step we must
prove that for any S-expressions u and v:

ATOMLIST(CONS(u,v)) « T > APPEND(CONS(u,v)NIL) s CONS(u,v)
is a consequence of the induction hypotheses:

ATOMLIST(u)= T > APPEND(uNIL)= u
and
ATOMLIST(v)= T > APPEND(VNIL)s v.

Like the base step, the induction step has two casei: u ¢ atoms and u -¢ atoms. In the first
case, symbolic evaluation reduces: '

ATOMLIST(CONS(u,v)) = T > APPEND(CONS(u,v)NIL) « CONS(u,v)
to:
ATOMLIST(v) = T > CONS(u,APPEND(v,NIL)) = CONS(u,v)

which an immediate consequence of the first induction hypothesis and the substitution of
equals for equals. In the remaining case, u —¢ atoms, symbolic evaluation reduces:

ATOMLIST(CONS(u,v)) » T > APPEND(CONS(u,v)NIL) = CONS(u,v)

NIL+T > CONS(u,APPEND(v,NIL)) = CONS(u,v)

1.3 Motivation for Creating TYPED LISP Page 7

which is an immediate consequence of the axiom NIL=T. Q.E.D.

It is clear that the proof using induction on S-expressions is longer and less transparent
than the proof using induction on atom-lists. Since the inductive structure of S-expressions
is different from that of atom-lists, the S-expression proof is forced to examine all cases of
S-expressions which do not represent atom-lists and prove that they are not atom-list
representations.

The auxiliary function ATOMLIST serves as a clumsy mechanism for specifying the
implicit data type atom-list. If we included atom-list as a distinct, explicit data type in our
programming language and expanded our first-order theory to include atom-lists as well as
S-expressions, the informal proof using induction on atom-lists could be formalized directly
in our first order system. However, since LISP programs typically involve a wide variety of
abstract data types, simply adding a few extra data types such as atom-list to LISP will not
eliminate the confusion caused by dealing with abstract data type representations rather than
the abstract types themselves. In fact, the more complex that an abstract type is, the more
confusing that proofs involving its representations are likely to be. Consequently, I decided
that the best solution to this problem is to include a comprehensive data type definition
facility in LISP and to formally define the semantics of a program P by creating a first-order
theory for the particular data types defined in P. The resulting language TYPED LISP is
described in the next chapter.

CHAPTER 2

TYPED LISP

2.1 Informal Description of TYPED LISP

TYPED LISP combines a recursive data type definition facility (similar to those proposed by
McCarthy [1963) and Hoare [1973]) with a modified subset of PURE LISP. For the sake of
semantic simplicity, TYPED LISP does not permit passing functions as parameters or
referencing non-local variables (ie. dynamic scoping). Furthermore, there is no distinction
between equivalent and identical data values; there is only one copy of any data value. A
TYPED LISP program consists of a set of data type and function definitions. As in PURE
LISP, the program is executed by evaluating some expression containing no variables or
undefined function identifiers.

2.1.1. Data Type Definitions
The set of primitive data ob jects in TYPED LISP is the set of all capital identifiers: {A, B,
«» Z, AA, AB, .., AZ, BA, .., AAA, ..}. Data types are simply sets constructed from this set of
primitive ob jects using the rules described below. The primitive type atom consists of all
primitive data objects except for NIL, ZERO, TRUE, and FALSE. For notational
convenience, we let every capital identifier denote the primitive data type consisting of that
identifier, eg. NIL denotes both the data object NIL and the data type {NIL}. The intended
meaning of a capital identifier is always clear from its context.
A data type definition in TYPED LISP has the syntax:

type type-identifier w data-type-expression
where type-identifier is a (lower-case) identifier and a data-type-expression is either:.

I. An enumeration listing a finite set of primitive data ob jects:

(Cpo- . Cyh

2.1.1 Informal Description of TYPED LISP Page 9

eg.
type boolean s {TRUE, FALSE).

A construction defining a set of data ob jects which are constructed from simpler ob jects.
A construction has the syntax

c(sl:Tr e sn:Tn)

where the constructor ¢ is the type-identifier being defined; Sp- s S, are (lower—case)
identifiers naming the component selector functions; and Ty ..., T, are the types of the
components, e.g.

type pair = pair(atoml: atom, atom2: atom)
which defines the data type pair consisting of ordered pairs of atoms, and creates the
constructor function pair: atom x atom - pair for constructing pairs from atoms, and
the selector functions atoml, atom?2 : pair - atom for selecting components of a pair.
A disjoint-union

T V...UT_

defining the data type formed by the union of the disjoint data types LTRSS T, g

type ext_pair a NIL U pair .

The disjointness of the subtypes T, ..., T, can easily be checked at parse-time.

A recursive-union
BIU...UBmUclU...Ucn

of the disjoint data types B, ..., B (called the base types), and the construction types
defined by the recursive constructions €ps - -+ €, Each recursive construction must have
at least one component type which contains the type defined by the recursive-union.
Some sample recursive-union data type definitions are:

type natnum s ZERO U suc(pred: natnum)
type tree = atom U cons(car: tree, cdr: tree)

e it S i i

2.1.1 Informal Description of TYPED LISP Page 10

The members of the type natnum defined above are precisely ZERO, suc(ZERO),
suc(suc((ZERO)), suc(suc(suc(ZERO))), ..; and the members of type tree are the
S-expressions constructed from the base set of ob jects atom.

Besides all primitive data ob jects and the primitive data type atom, there are several other
pre-defined data types in every TYPED LISP program. The universal type any consists of
all data ob jects defined in the program. All the other pre-defined types can be described in
terms of standard TYPED LISP data type definitions as shown below:

type boolean s {TRUE, FALSE)

type natnum s ZERO U suc(pred: natnum)
type minus = minus(abs: suc)

type integer = minus U natnum .

In contrast to PURE LISP, the false boolean value is denoted by the data object FALSE
rather than NIL. Furthermore, boolean functions must return either TRUE or FALSE.

2.1.2. Function Definitions
TYPED LISP function definitions have the straightforward syntax
function function-name (p T ,..., p T)T = ¢

where function-name is a (lower-case) identifier naming the function being defined; p P
p,, are (lower-case) identifiers serving as parameters; Ty ..., T, are the types of the

corresponding parameters; T is the type of the range of the function; and § is a TYPED LISP
expression containing no variables other than the parameters.

Every TYPED LISP function is strict, l.e. it is undefined if any of its arguments is
undefined or belongs to the wrong type. The only primitive or implicitly defined functions in
TYPED LISP, other than the constructor and selector functions corresponding to every
construction type, appear below, along with their domain and range specifications:

Sfunction domain range

equals any x any boolean

c any x any boolean

and boolean x boolean boolean

or boolean x boolean boolean

not boolean boolean

T any boolean (for every type T)

T

212 Informal Description of TYPED LISP Page 11

The functions equals, and, or, and not all have the obvious interpretations. Note that, uniike
their PURE LISP counterparts, and and or are call-by-value functions (i.e. they always
evaluate both of their arguments). The function € (written as an infix operator) tests whether
or not its first argument is a proper substructure of its second argument. Hence, for any data
value t, t € t returns FALSE, while ZERC c suc(ZERO) returns TRUE. For every type T,
the function :T" (written as a postfix operator) is simply the characteristic function for type T.
Given any data object x, x:T' returns TRUE if x is a member of type T and FALSE
otherwise.

Every construction type definition c(s:T, . . ., 5,:T,) implicitly defines the constructor

function ¢ mapping T x ... x T into type ¢ and the selector functions s, mapping type ¢
into type T, i = I, .., n. The constructor function ¢ applied to arguments x,, .. ., X of types
Ty - - » T, respectively, returns the constructed data object «(x, . . ., X). Inversely, each
selector function s, applied to the data ob ject oy, ... xp) returns x,.

2.1.3. Expressions
Expressions in TYPED LISP are limited to the following forms:
1. An if-expression with syntax:
if E, then 52 else E3
where £, £,, £q are expressions.

2. A case-expression with syntax:

where T is any data type which is an enumeration, disjoint-union, or recursive-union of
thetypesT,..., T ;and ¢ El. ek En are expressions.

8. A function-call of one of the following four forms:

f(ElH il -fn)

not §
€, binary-boolean-operator &y
€, tope-operasor T

2.1.3 Informal Description of TYPED LISP Page 12

where f is a function-name (including constructor and selector names); El. Sy En are
expressions; binary-boolean-operator is either equals, nequals, €, -~c, and, or or;

type-operator is either : or —1; and T s any data type.

4. A bracketed expression

(&)
where £ is an expression.
5. A primitive data ob ject (capital identifier).

In TYPED LISP, expressions are evaluated according to a very simple set of rules. As in
nearly every language (eg. ALGOL W) implementing conditional and case expressions, only
the index-expression and the selected alternative expression are evaluated. Since all TYPED
LISP functions are strict (except for the conditional and case operators), all function
arguments are passed by value--including the arguments of boolean binary-operators, not,
type-operators, and all constructor and selector functions. In other words, every argument of a
function-call is evaluated before the function-call itself is evaluated. Each of the operators
equals, <, and ~T (for each type T) simply denotes the primitive TYPED LISP function of
the same name. Similarly, the operators nequals, ~<, and ~T (for each type T) denote the the
functions not ® equals, not ® ¢, and not @ :T, respectively.

Initially, I enforced the following standard parse-time type checking rules in expressions:

1. The declared type of an argument in a function-call must be a subset of the declared type
of the corresponding formal parameter.

2. The declared type of the body of a function must be a subset of the declared type of the
function’s range.

3. The declared type of the index-expression in a case-expression must be a subset of the
type declared at the head of the case-expression. Similarly, the type of the
index-expression in an if-expression must be a subset of the type boolean.

However, 1 quickly discarded the idea when it became apparent that such type restrictions
forced the programmer to write awkward, inefficient code in many cases. Consider the
following sample program defining the commonly used functions assoc and put for
manipulating LISP “a-lists".

type tree = atom U join(left: tree, right: tree)
type pair s pair(var: atom, val tree)
type pair_list & NIL U cons(head: pair, taik pair_list)

2.1.3 Informal Description of TYPED LISP Page 18

type ext_pair s NIL U pair

function assoc(v: atom, I pair_list): ext_pair e
Join case of |
NIL: N
const {head(l)) equals v then head(l)
Moo nasoc(v,tail(l))

function put(v: atom, t: tree, k pair_listk pair_list »
pair_list case of |

NIL: cons(pair(v,t)NIL) .

cons: if var(head(l)) equals v then cons(pair(v.t)taik(1)) ?

else cons(head(l),put(v.t,tail(1))) .

Now assume we want to use the expression val(assoc(v,])) in a context where 1 always contains
a pair p with head(pv. The declared type of assoc is ext_pair which is not a subset of the
domain of the selector function val. Consequently, the expression is syntactically invalid
E according to standard parse-time type-checking rules, even though its meaning is clear. If we
insist on requiring the type of an argument to be a subset of the declared type of the
corresponding formal parameter, we must replace

vaKassoc(v,1))
by
ext_pair case assoc(v,)) of
NIL: some value indicating an error
pair: vaKassoc(v,)))

even though the NIL alternative of the case-expression can never be executed. Since
situations of the this kind frequently occur in actual programming practice, I relaxed the
parse-time type checking rules so that the type of an expression only has to intersect the type
required by its context, eg. the type of an argument must intersect the type of the
corresponding formal parameter. Of course, in an actual TYPED LISP implementation,
run-time type checking should be done in all those cases where standard parse-time rules are
violated. If the user formally proves that a certain run-time error can never occur, then that
particular check can be safely eliminated.

2.2 Syntax of TYPED LISP

The formal syntax description appears below. I have followed Hoare and Wirth's syntax
diagram notation as closely as possible using the graphics characters available to me.
Non-terminal symbols appear in standard type; terminal symbols appear in boldface.

22 Syntax of TYPED LISP

program

-1 data-type-definition

-4 function-definition

Page 14

+ function-declaration
data-type-definition
type ~ type-identifier
type-identifier

——{ identifier }——

identifier

lower-case-letter —

enumeration

| { +{ constant

enumeration

dis joint-union

construction

recursive-union

B ———— . T J

o

22 Syntax of TYPED LISP Page 15

constant

capital-letter

dis joint-union

-1 type-name » X
u o
type-name i
» identifier —s j
[
constant
construction
| constructor - (-+{ selector-declaration ~)
4
constructor

———{ identifier f——

selector-declaration

b

———sd selector o

type-name |—s

selector

———sd identifier

g ————r T T & .o Vo A
o 3 A e Wy WP

22 Syntax of TYPED LISP Page 16

recursive-union

———{ disjoint-union — U construction »

function-declaration

-+ function —{ function-name

— partial

(variable-declaration -) o ¢ type-name |—s

Y

function-name

———{ identifier

variable-declaration

—— variable g K -+ type-name |——

variable

| identifier L—»

function-definition

grEr function-declaration o e +| expression p—s

Sl

22 Syntax of TYPED LISP
expression
-] Ccase-expression P
-+ if-expression
+ term
case-expression
—— type-name - case of expression
o ¢ r
I ype-name R ! expression
if-expression
o if expression
+| then - expression else expression j——s
term
factor v —
4
or |

Page 17

22 Syntax of TYPED LISP Page 18

factor
-+ simple-expression —
4
and e
simple-expression
not + simple-expression —
- primitive-expression
— equals primitive-expression
1
nequals
c
-c
primitive-expression
-1 constant —a
4 4
-+ variable - @ +| type-name
function-call ~+ | = —l
~ | expression |—] |—

22

Syntax of TYPED LISP Page 19

function-cali

| function-name (expression) p—s

execution-expression

— expression —

The syntax rules which are not context free appear below:

1.

The identifiers atom, any, boolean, natnum, suc, minus, integer, and all
capital-identifiers are pre-defined type-names for every TYPED LISP program P. The
selectors pred and abs are implicitly defined within the constructions of suc and minus
[see Section 2.1.1).

An identifier employed as a constructor, selector, type-name, or function name must be
unique. No such identifier may be used as a variable. Furthermore, the variables
declared within a particular function definition must be distinct.

The identifiers type, function, declare, partial, if, then, else, case, of, and, or, not,
equals, and nequals are all reserved; they may not be defined by the user as type-names,
selectors, constructors, or function-names.

Before an identifier appears in a data-type-expression as a type-name it must be defined

in a data-type-definition as a type-name or constructor--with two exceptions:

a. In the definition of a recursive type T, the type-names used in selector-declarations
may be defined anywhere in the program.

b. If a type-name T is defined by a data-type-expression which is a construction, then
the constructor name must also be T'.

The type-names which appear as alternatives in a disjoint-union must denote dis joint
types. We defer the definition of disjoint type-names until the next chapter (Section 2.3.2)
where we will continually use that definition in proofs. Despite the fact that the
definition for dis jointness of type-names is given in the chapter on semantics, it is really a
syntactic notion. We can easily check to see whether or not two types are dis joint at parse
time.

Every declared function must eventually be defined by a function definition.

2.2 Syntax of TYPED LISP Page 20

Furthermore, the parameter lists in must be identical in both cases.

7. A particular variable v may not appear within the expression forming the body of a
function-definition unless it is declared in the function-definition.

8. The type-name T heading a case expression £ must be either be defined as an
enumeration, disjoint-union, or a recursive-union. Within the case bc ly of §, the case
alternatives must be in one-to-one correspondence (including the same ordering) with the
subtype alternatives. Each case alternative must begin with the name of the corresponding
subtype.

9. A function-name may not appear in a function-call unless it has already been declared as
a function-name in a function-declaration, or as a constructor or selector in a
construction. In a function-call, the enclosed list of arguments must contain the
appropriate number of arguments for the particular function being called.

10. No variables may appear in an execution-expression.

2.3 Semantics of TYPED LISP

Before defining the semantics of TYPED LISP, we must establish some notation for
distinguishing between a symbol and what it denotes. In cases where the distinction is
necessary, we will underline the symbol when talking about its denotation. On the other hand,
when no confusion is possible, we will usually omit the underlining of denotations in the
interests of improved readability.

In this section, we will define the meaning of an arbitrary TYPED LISP program P by
using the following approach. First, we will define a first-order predicate calculus language
Lp (including equality) such that the terms of Ly, include all syntactically valid TYPED LISP

expressions given the functions and data types defined in P. Then, to define the meaning of
terms and formulas in the language Lp, we will construct a standard structure M, consisting

of a data domain and interpretations for all the constant, function, and predicate symbols in
the language. We will use MP to define the meaning of any statement about P written in Lp.

2.3.1. Assertion Language Syntax

Before we can define the syntax of our assertion language, we must review the standard
definition for a first order predicate calculus language including equality:

Definition. Given a countably infinite set of variables V, a (possibly empty) set of
constant symbols C, a (possibly empty) set of n-ary function symbols F__ for each positive

23.1 Semantics of TYPED LISP Page 21

integer n, and a (possibly empty) set of n-ary predicate symbols for each positive integer

n, we define the corresponding first order language L (including equality) as follows. The

terms of L are defined by the inductive rules:

a. Any variable v e V is a term.

b. Any constant symbol ¢ € C is a term.

¢ Iff, ., 1 areterms and f e F (f Is an n-ary function symbol), then Ait,, .. 1) is a
term.

The formulas of L are defined by the rules:

a. Ife, and 1o are terms, then ¢ |~fgisa formula.

b. If ¢, ., ¢ areterms and p € P (p is n-ary predicate symbol), then Py 1) isa

formula.

If « and B are formulas, then (@ A 8) is a formula.

If @ and B are formulas, then (& v) is a formula.

If @ and B are formulas, then (a > f) is a formula.

If @ is a formuly, then (-a) is a formula.

If @ is a formula and v € V (v is a variable), then (Yv &) is a formula.
If @ is a formula and v € V (v is a variable), then (v &) is a formula.

F®m m 0 Qo

Given a TYPED LISP program P, the assertion language L, is the first-order language with
the following specifications:

1. The variables of LP are:

a. All identifiers which are not reserved or defined as type names, constructors, selectors,
or function names in P.
b. Subscripted single letter identifiers, i.e. 'l’bl' won By Bge vors B o o o

2. The constant symbols of L, are @, A, B,...,Z, AA,AB,...,AZ ..., AAA,... e all

valid TYPED LISP constants plus «.
8. The function symbols of Ly, are equals, <, not, or, and, is-T' (for every type name T

defined in P), T-case (for each type name T defined in P which is a disjoint or recursive
union), and all the function names, selectors, and constructors defined in P. Each function
symbol f in L, takes exactly the same number of arguments as its counterpart in P; hence,

not and is-T (for every type T defined in P) take one argument; equals and c take two
arguments; and T-case takes n+ 1 arguments where n is the number of subtype alternatives
in the dis joint union forming T.

4. There are no predicate symbols in Lp.

We will omit parentheses around formulas whenever convenient. In the absence of
parentheses, the precedence of connectives in decreasing order of binding power is =~, A, v, .
Al of the binary connectives (A, v,) are right associative.

231 Semantics of TYPED LISP Page 22

To make the syntax of L, and TYPED LISP consistent, we include the following
abbreviations in L. Let £, ¥, a P % denote arbitrary terms, and let T denote an
arbitrary type. Then:

not § stands for not(f)

¢ equals ¢ stands for equals(§y¥)

¢ nequals ¥ stands for not(equals(§.¥))

Ecy stands for c(k¥)

t-cy stands for not(c(k.¥))

E: T stands for is-T'(§)

E~T stands for not(is-T(§))

if £ then ¢ else stands for boolean-case(¢ ¥.0)

T case ¢ of Tyay Tyay ... Toa) stands for 1‘-g:ase(E.al.a2 i)

(where T is defined as the disjoint union of the types T |, T2’ s Tp)

OO o N -

The operators introduced in the above abbreviations are ranked in decreasing order of
precedence in equivalent groups as follows:

{T, ~T} (for any type T} 2
{equals, nequals, €, ~c} 2
{not} 2

for}] 2

{and}

When the syntax of L, is extended to include the above abbreviations, the set of terms of Lp
includes all syntactically valid TYPED LISP expressions given the declarations in P.

For notational convenience, we also introduce the following formula abbreviations where §, ¢
are arbitrary terms and @, § are arbitrary formulas.

v | stands for ~E=¥)
/] stands for @sBf)ar(@oa)
stands for § = TRUE

The new connective » has lower precedence than the other connectives (=, A, v, 2). Like the
other binary connectives, it is right associative. Of the three abbreviations introduced above,
the last one is by far the most important. Abbreviating the formula §sTRUE by the term §
allows us to treat boolean expressions as formulas without jeopardizing the soundness of our
formal system. In addition, this abbreviation permits us to denote the universally valid
formula by the boolean truth value TRUE and the the unsatisfiable formula by the boolean
truth value FALSE without any loss of precision. Adding this abbreviation to Lp does not

231 Semantics of TYPED LISP Page 23

make the syntax of L, ambiguous; a term'’s context uniquely determines whether or not it

abbreviates a formula.
2.3.2. Assertion Language Semantics

We will use a standard first order definition of truth for formulas in Lp given interpretations

for the constant symbols and function symbols [Enderton 1972). The formal definitions
appear below:

Definition. Given a first order language L, a structure M corresponding to L is a
quadruple with the following components:
1. A non-empty set [M| called the domain of M.

For each constant symbol C in L, a member C of [M|.

2
3. For each n-ary function symbol f in L, an n-ary function & M™ - M|
4. For each n-ary predicate symbol P, an n-ary relation 5 c IM[n.

Definition. Let M be a structure for a first-order language L including equality. An
inter pretation function for M is any function mapping the set of variables in L into |M].

Definition. Let s be an interpretation function for the structure M. Given M and s, the
meaning of any term or formula ¥ in L is <y M;s> where < > denotes a translation
function that, given a structure M and an interpretation function s, maps the formulas in
L into truth values (true or false) and the terms of L into elements of M| We define the
translation function < > as follows:
1. For any constant C in L,

<C,M,s>=C
2. For any variable x in L,

<X, M. $H . S(X)
3. For any term in L that is a function call ﬂal, e, @

<ﬂa', e an). M, s> -[(<a|,M.s>, ...,<an,M,s>).

)'

4. For any atomic formula in L of the form a=f,
<a=f, M, s> = true if <a,M,s> and <8 M,s> are equal
= false otherwise.
5. For any atomic formula in L of the form P(al. o an),
<P(¢l. doog an), M, s> = true if (<a|,M,s>, - <¢n.M,s>) <P
= false otherwise.
6. For any formula in L of the form # A &,
<0 A M,s> =true if <0 Ms> is true and <¢,M,s> is true
= false otherwise.
7. For any formula in L of the form # v ¢,

232 Semantics of TYPED LISP - Page 24

<0 v é, M, s> =true if <0 Ms> is true or <@ M,s> is true
= false otherwise.
8. For any formula in L of the form @ > ¢,
<05 @, M, s> = true if <OMs> is false or <@ M,s> is true
= false otherwise.
9. For any formula in L of the form -8,
<-0, M, s> = true if <0 M,s> is false
= false otherwise.
10. For any formula in L of the form Vx8,
<Vx0, M, s> = true if <0,M,s> is true for all interpretation functions s’ such that
s'(y)=s(y) for every variable y distinct from x.
= false otherwise.
11. For any formula in L of the form 3x8,
<3x0, M, s> = true if <0,M,s> is true for some interpretation functions s’ such that
s'(y)=s(y) for every variable y distinct from x.
= false otherwise.

The translation of a term formula ¥ corresponds exactly to our intuitive understanding of the
meaning of 7 given that each free variable v denotes s(v), each constant symbol denotes the
corresponding element in M, each function symbol denotes the corresponding function in M,
each predicate symbol denotes the corresponding relation in M, and the built-in equality
predicate "=" denotes the binary relation {(x,x) | x ¢ [M[}.

We will use the following terminology concerning structures throughout the sequel.

Definition. We say that a formula & is true in M for s if and only if <y, M, s> = true.
We call M a model for a (denoted M |- &) iff M satifies a for all interpretation functions
s. If every formula in a theory (set of formulas) T in L is satified by M, then we say that
M is a model for T (denoted M |- T).

Proofs of metatheorems about out formal system will frequently rely on the following lemma
without specifically citing it, since it is intuitively obvious:

Lemma L. If two interpretation functions sl and s2 are identical for all the free variables
appearing in a formula or term v, <, M, sl> is identical to <¥, M, s2>.

Proof. Immediate from the definition of meaning of terms and formulas.

Before constructing the structure corresponding to an arbitrary TYi’ED LISP program P, we
must define the containment and disjointness relations on type names. Intuitively, the
elementary or minimal types in a TYPED LISP program P are the primitive data ob jects
(pre-defined types in every program) and the constructor types defined in P. Every other type

232 Semantics of TYPED LISP Page 25

defined in P can be uniquely decomposed into a (possibly infinite) union of these elementary
types. The disjointness and containment relations on type names can easily be defined in
terms of these decompositions. We formalize this approach in the following definitions.

Definition. A type-name which is a capital-identifier or a constructor is méinimal.

Definition. The normal form for type name T defined in P (denoted NF(T)) is a set of
TYPED LISP minimal type-names defined inductively by the rules:

a. For any type name C which is a capital-identifier: NF(C) = {C}.

For any type name ¢ which is a constructor defined in P: NF(c) = {c}.

NF(atom) = {all capital-identifiers except NIL, TRUE, FALSE, ZERO].

NF(any) = {all constructors} v {all capital-identifiers).

For any type name T defined in P as the union (enumeration, disjoint-union, or
recursive-union) of the type names Tl' e

-
NI(T) = NF(Tl) vu...u NF(Tn).

T a0 o

Definition. Let U and ¥ be any type names defined in P. We say that U contains V
(denoted ¥ < U) iff NF(V) is a subset of NF(U).

Definition. Two data type-names U and V are disjoint iff NF(U) and NF(V) are dis joint
sets.

The binary relation < satisfies all the defining properties of a reflexive partial ordering
except for anti-symmetry (x < y and y < x implies x = y). Two type-names U and ¥ may be
equivalent without being identical (i.e x s y and y < X, but X » y). In the next section after
defining the interpretations for type-names, we will prove that type-name U < type-name V
iff the data type denoted by U is a subset of the data type denoted by V. Furthermore, we
will verify that two type-names are disjoint if and only if the data types they denote are
dis joint sets.

Now we are finally ready to define the meaning of an arbitrary TYPED LISP
program. For any TYPED LISP program P, we construct the standard structure Mp as

follows:

1. The domain [Mp| consists of the following symbols:

a. All underlined capital-identifiers, e. g. A, B, . . ., Z, AA, . . . Each underlined
capital-identifier C belongs to every type T defined in P such that C < T (including C
of course). Using alternate terminology, C belongs to type T if and only if C « NF(T').

. The symbol w which does not belong to any type.

c. For each construction definition c(:l: Ty So T2, I Tn) in P and for any

symbols @, ..., & in M| of types T, ..., T, respectively, the symbol c(a 17%p)

—_—

232 Semantics of TYPED LISP Page 26

is also in IMP| and belongs to every type T defined in P such that ¢ < T (including ¢

of course). In normal form terminology, c(al.....an) € [Mp| belongs to type T if and
only if ¢ € NF(T).

2. Each constant symbol C in LP‘ is assigned the element g of IMPL

3. Each n-ary function symbol f in Ly is assigned an n-ary function f : IMP[" + Mpl as
follows:
a. We define the functions equals, <, and, or : |MP|2 - IMP' and not : |MP| - 'MP.
corresponding to the function symbols equals, <, and, or, and not, respectively, by:

egunls(i.z) ~wifx=wory=w
= TRUEif x = y_and Xy w
= FALSE otherwise

SppeEiizegoiya
= TRUE if x textually occurs in y and x = y
= FALSE otherwise

g_n_d_(g_.l) = w if x ~¢ boolean or y ~¢ boolean
= TRUE lfﬁ = TRUE and) TRUE
= FALSE otherwise

?_'.(E-Z) = w if x ~¢ boolean or y ~¢ boolean
- TRUE if x = TRUE or y = TRUE
= FALSE otherwise

E"_t(i) - wif X ~€ boolean
= TRUE if x = FALSE
= FALSE otherwise

b. For each type T defined in P, we define the function is-T : IMPI - IMPI interpreting
the function symboi is-T by:

is-T(x) = TRUE if x e type T
~wifx-w
= FALSE otherwise.

c. For each type T defined in P as the union (enumeration, dis joint union, or recursive
union) of the types TpoowTp we define the function T-case : IMPf"' - MP'

232 Semantics of TYPED LISP Page 27

interpreting the function symbol T-case by:

T'c'"(f‘_g""'f_g)'xi lfz(_ch‘,Islsn.

= w otherwise.

d. For each construction definition (s it Tl’ L% T2. R A Tn) in P, we define the

functions ¢ : IMPI" - IMPI, and 5 IMPI - IMPI fori=1,2...,nby:

i{x]....,x_n_)-c(xl....,xn) lfﬁttypeT..lslsn.

= W otherwise.

5{(x) = w if x -e type ¢

::i(c(x', X)= X

For each function symbol g explicitly defined in a function definition in P,
function g(xl : Tl‘ cea X T") :Tar,

we define the corresponding function g : |MP|" -+ IMp| by the following process. First,

we create an infinite sequence of structures Mp = {MPj 1§=0,1,.]} for Lp such that

every member ij is identical to Mp except for the interpretations assigned to
explicitly defined function symbols. Each explicitly defined function name g is
interpreted in MPJ by the function &J: IMPI" -+ IMPI defined by:

‘J(,.l,___,h).a,MPJ-',» I)>0and x, «T, forallf, I sisn,

= W otherwise,

where and s is any interpretation function mapping X;into x,, I sisn.

From an intuitive viewpoint, d is simply the function computed by evaluating
& to function-call depth j and returning @ if the computation is incomplete.
Informally, we want to interpret g as the limit of l'.’ as) approaches ». Restated in
more precise terms, our goal is to define g as the least upper bound of the sequence G
- {d I § =0, 1, ..} under the usual partial ordering & on computable functions. To

achieve this goal, we must define the partial ordering & on functions and prove that
the least upper bound of the sequence G exists.

Definition. For any two elements x.,y ¢ Mpl we say x is less defined or equal to y

282 Semantics of TYPED LISP Page 28

(denoted x & y) iff x = @ or x = y. For any two functions r,s : lMPf‘ - [Mpl, we say
r is less defined or equal to s (denoted r €) iff r(x, .., X) € s(x |, ..., x) for all
XpoonXp € IMPI. For any two structures Ml, M2 in the sequence of structures
Myp, for the program P, we say that M, is less defined or equal to M, (denoted M|
€ M2) Iff the interpretation for every function symbol f in M is less defined or
equal to (&) the corresponding interpretation in M2

Given these definitions, it is a straightforward task to prove the following lemmas
leading to our main theorem.

Lemma 2. Any ascending sequence of elements X = {x, |1 =0, 1, .} in Mp| has a
least upper bound.

Proof. The sequence is either identically @ for all i, or there exists an integer k
such that x, = for some k 2 0. In the former case, w obviously is a least upper

bound. In the latter case, X, =X, for all { 2 k, since no other element in MPI is 2
X, Consequently, x, isa least upper bound. Q.E.D.

Lemma 3. Any ascending sequence of functions {f, |1 = 0, 1, .} in the function
space Mp|" + [Mp| has a least upper bound.

Proof. Let g : Mp[" + [Mp| be defined by
gxy, xn) - I.u.b.[f‘(x o xn) 11=0,1,.}.
We know that l.u.b.(fi(xl. ws Xo) 11 = 0, 1, .. } exists by the previous lemma,

implying that g is well-defined. Furthermore, by the definition of the & relation
on functions, ¢ must be the least upper bound of the sequence of functions filt=-

0, 1, ..}, since for any x, ..x_ ¢ Mpl gx, . X) = Lub{f(x, ..x) [1=0,1,.}).
QED.

Lemma 4. Let M, and M, be structures in the sequence {MpJ | for § = 0, 1, ..}
such that M, & MZ' For any term 7 in Ly, and any interpretation function s for
IMPL <7, Ml' $ € <7, M? $>.

Proof. By induction on the structure of f.
Case . 7 Is a constant. This case is trivial since the interpretation’ of
constants is identical in M, and M,

232

Semantics of TYPED LISP Page 29

Case 2. 7 is a variable. This case is also trivial since the interpretation of a
variable is entirely independent of the structure--it depends only on s.
Case 3. 7 is a function call of the form fr, .., rn). By the induction

hypothesis <y MI’ $>E <, M?’ s>forie|, ..,n

Subcase 3a. [is case-T for some type name T which is the union of the
types T, 1 = 2, ., n. By the definition of the sequence of structures M, we know

case-T is interpreted by case-T in every structure in the sequence. Hence, for any
structure M in the sequence,
<M, s> = ctse-T(<fl. M, s>, .., < M, s>).

If <7,, M, s> does not belong to type T, then <7, M, 3> equals w and the lemma
holds. Otherwise, the induction hypothesis implies <7, M, 5> = <7, M2, $>eT,

for some i. As a result,
<T, Ml' $> = <fl, Ml' $E <f‘, MZ' $> = <T, M?’ s>,

proving the lemma in this subcase.
Subcase 3b. f is not case-T for any type name T. Consequently, the
interpretation for f in every structure in the sequence M, is strict. Let f, and fo

denote the interpretations for f in M, and M, respectively, and let Ty x ... x i
be the domain for f declared in P. If, for some i, <7, M,, s> does not belong to
T,, then

<7, M|, > -ﬁ(<f|, Ml’ 8>, <T s M|, $H) = w
and the lemma is obviously true. Otherwise, the induction hypothesis implies that

for all i,
<f‘, MI' $> = <f‘, M2, $ ¢ T‘.

Since the interpretation for f in MI is less defined or equal to (&) the
corresponding interpretation in M,, we conclude that '

<, Ml' > -f|(<fl, Ml, 8> <Py, Ml' $>)
E]’2(<7l, M? 3>y <Tp, M2’ $>)
- <?, M2, $>,
proving the lemma. Q.E.D.

Lemma 5. The sequence M, = {MP-‘ |j=0,1,.} is ascending.

Proof. We must prove that Ml,.J € Ml,j"h ! for J =0, 1, .. The proof proceeds by

induction on § Since the implicitly defined function names of P are interpreted
identically in all structures in the sequence My, we only need to consider the

explicitly defined function names of P. Let ¢ be an arbitrary function name

232

Semantics of TYPED LISP Page 30

explicitly defined in P. For j = 0, I, .., we must show that gJ € gj" ! given that

MPJ" € Mp'I when j> 0.

Base case. j = 0. For each explicitly defined function name g, go(x) = w for
all x. Hence ‘0 S g'.

Induction step. Given the induction hypothesis that MPJ' e ij. we must
prove that ‘J € g-"l. Let

function glx, : T, ... x : T):iTer,

be the function definition in P for g. By the definition of the sequence of
structures M, the following identity holds for k = 1, 2, ...

k k-1

£ (x_l,....h)-d.Mp .s>|fj>0mdﬁt1“foralll.lslsn.

-w otherwise.

If, for some 1, x, does not belong to type T, we get:

f'("l“""‘n)'!

and the lemma holds. Otherwise,

f’(ﬁ Biae 1'1) . <7, MPJ", s>
and

‘.l‘l(x x)= <, M "8)

-—lo U .—n ’ P ’

By the induction hypothesis, MP-" e MP-'. Consequently, the previous lemma
(Lemma 5) implies that

‘J(ﬂ' NI :'!) . <r, ij'l, > & <f, MPJ' H = ‘J‘l(-x_l, % f_'!)

proving the lemma. Q.E.D.

Theorem 1. For each explicitly defined function symbol g appearing in P, the
corresponding sequence of functions G has the following properties:

a. G is an ascending sequence under the partial ordering &.

b. G has a least upper bound.

Proof of a. Immediate from the previous lemma.

Proof of b. Immediate from property a. above and Lemma 8.

232 Semantics of TYPED LISP Page 31

From the perspective of least fixed-point semantics, the interpretation in M, for each

explicitly defined function symbol g is the least call-by-value fixed point of the
recursion equation for g. Given a recursive definition for the function f,

function flx, : T, ... x, tT):Tur,
a call-by-value fixed-point of the equation is any function f which is a standard least

fixed-point [see Milner 1973] of the functional r* defined by:

r:[f](xl, ol xn) = if Xy Tl and ... and Xp Tn
then T evaluated at (x|, = xn)

else w.
See APPENDIX 3 for a discussion of call-by-value least fixed points.

4. Since there are no predicate symbols in Ly, there are no relations in M,

Now that we have constructed the structure structure M, interpreting the function and
constant symbols of L, we can define the meaning of formulas and terms in Ly in the

obvious way. The meaning of a formula or term 7, given some interpretation function s
assigning values to the free variables in ¥, is simply <7, Mp, s>. If a formula ¥ in Ly, is true

for all interpretation functions s, then 7 is a theorem for P.
2.3.3. The Semantics of Program Composition

At this point, it is illuminating to examine how the structure M, for the program P changes

when we add new function or data type definitions to the program. Intuitively, the meaning
of a TYPED LISP data type or function definition is dependent only on the data types or
functions used in the definition. Consequently, expanding a program by adding new data
type or function definitions should not affect the meaning of the data types or functions
already defined. Does this property hold for our formal definition of the meaning of TYPED
LISP programs? The answer is a qualified yes.

If we create a new program p* by adding some new function definitions to the original
program P, the interpretations for all of the old function symbols are unchanged in the new

the structure Mpx. Similarly, if we include new type definitions in P*, then all of the

interpretations for the old function symbols are unchanged when we restrict them to the
original domain. However, there are rare cases where a statement in L, is true in My but

false in Mp®, and vice-versa. Fortunately, the statements involved are of no practical

importance; they are simply statements or consequences of statements asserting the existence of
an object of type any not belonging to any other type defined in P. Furthermore, we can

233 Semantics of TYPED LISP Page 32

design our formal deductive system so that the provable theorems of Lp are a subset of the
provable theorems of Lpx [Statements which are true for M, but not for Mpt will not be
provable from the axioms for Mp.] Consequently, extending a program won't force us to
reprove the theorems we have already proved.

3 Page 33

CHAPTER 3

A FORMAL DEDUCTION SYSTEM FOR TYPED LISP

3.1 Introduction

Although Section 2.3.2 presents an intuitively plausible definition of the meaning for any
statement in the assertion language LP’ we have no systematic way to determine whether a

particular statement in L is true or false. Unfortunately, Godel's incompleteness theorem

implies that there is no effective procedure which will determine whether an arbitrary
statement in Lp is true or false in My, In fact, Godel's theorem implies the much stronger

result that the true statements of M, are not recursively enumerable. From the standpoint of
completeness, the best that we can do is to construct a set of axioms Ap In Lp incorporating
all of the fundamental properties of Mp that we understand and use standard first order

predicate calculus rules of inference (eg. Gentzen's Natural Deduction Rules) to prove
theorems from the axioms. In practice, the inherent incompleteness of any axiomatization
should not be a very serious problem. If a programmer genuinely understands the workings
of a program he writes, then he should know at least in principle how to prove that the
program is correct from the basic properties of the program data. Furthermore, if our
first-order deductive system is constructed with care, virtually every such proof will be
formalizable in our deductive system.

8.2 Ap: An Axiom System for the Standard Model

We will now construct a set of axioms Ap, for M. To demonstrate that Ap Is really an
axiomatization of My, we must informally prove that every axiom in Ap s true in MP' In
the course of these proofs, we will need the following definitions, lemmas, and theorems:

Lemma 6. For any types T, T.z; T,s T2 implies that type T, is a subset of type T,

Proof. Immediate from the construction of IMPL

32

Ap: An Axiom System for the Standard Model Page 34

Definition. A minimal type T is either a single element type C containing the primitive
ob ject C, or a construction type.

Lemma 7. Any two minimal types with distinct names are dis joint.

Proof. Immediate from the construction of IMPL
Lemma 8. Every element of IMPI except w belongs to a unique minimal type.

Proof. Every x ¢ [Mp] is either a primitive object or a constructed object. If x is some

primitive ob ject C distinct from w, then x belongs to the minimal type C; otherwise x is a
constructed ob ject and x belongs to the corresponding contruction type. Since all minimal
types are dis joint, no element can belong to more than one minimal type. Q.E.D.

Theorem 2. Every type T defined in P is the union of the types denoted by the type
names in NF(T).

Proof. Let x be an arbitrary element of T, and let T, be the minimal type of x. By the
construction of [Mpl, x belongs to type T if and only if the type name T « NF(T). Q.E.D.

Corollary 2.1. Let x be a data object in Mp| and let T, be the minimal type of x. Then x
belongs to type T if and only if T', < T.

Proof. Immediate.

Corollary 2.2. If the type name T is defined in P as the union (enumeration, disjoint
union or recursive union) of type names T T, then for any data ob ject x, x belongs

to type T if and only if x belongs to type T, for some i, 1 sisn.

Proof. By the definition of type name normal forms, NF(T) = NF(T') u....u NF(T'). Let
T, denote the minimal type of x. By Corollary 2.2, x belongs to type T if and only if the
type name T', « NF(T). But the latter condition holds if and only if T, « NF(T')) for some
I, 1 <15 n, which by Corollary 2.2 is equivalent to x ¢ T for some i.

Lemma 9. Let l[‘l | j=0,1,.} be an ascending sequence of functions mapping 'MPln into

Mp| Let {x,l 1j=01,.}... {xnj | j=0, 1, ..} be ascending sequences of elements in
Mpl Then:

Ap: An Axiom System for the Standard Model Page 35

tub. (kx4 x Higeo1,.)-
tub. {ubix X 1k =01, tubix K 1k=0,1,.D1j-0,1,.)

Proof. Each ascending sequence {xij [§=0, 1.} 1 s1sn, is either identically w for all §,
or there is some integer ki such that xij 2,00 for all j 2 kl‘ If the sequence {x‘J lj=0,
1, ..} is identically w, we set k, to zero. Letk = max{k, | | <1 s n}. Each sequence (x‘j (]

=0, 1, ..}, I 515 n,is constant after the first k elements. Consequently the two sequences:

W x hig=01,.9
and
(oubix K ike0 1, b K k=01, D15-0,1,.)

are identical beyond the first k elements and have identical least upper bounds. Q.E.D.

Definition. The partial ordering < on the domain M| is defined by:
x cy iff (x,y) = TRUE

Lemma 10. The the partial ordering ¢ on the domain Mpl is well-founded (ie. no
member of the domain has more than a finite number of predecessors).

Proof. Let z be any member of lMpl By the definition of Mpl z must be either a

primitive ob ject which has no predecessors or a finitely constructed ob Jject. But the only
predecessors (under the ordering <) in IMp| of a finitely constructed ob ject z are simply

the ob jects textually occurring in z. Obviously, there can only be a finite number of such
ob jects (they all must be ob jects created in the process of constructing z). Q.ED.

Theorem 3.. For any function definition in P:
function flx: T\, ..., x:T kTouk
and any interpretation function s for Lp which maps x, into some ob ject in Telsisn

<flx XM ps> = <f(xl,...,xn).MP,s>

Proof. Let x; denote s(x)), the interpretation of x,, and let [j denote the interpretation of f
in the struc;re MPJ‘ By the construction of Mp,
<j(xl. xn), MP, s> -ﬂﬁ' v f[l_)
- |.u.b.{[1(x_l. X 10,

3.2 Ap: An Axiom System for the Standard Model Page 36

= Lubf<t Mp s> 1j= 0,1,
So to prove this axiom is true in Mp, all we have to do is prove the following lemma.

Lemma 11. For any expression 7 in Lp and interpretation function s,

<TMps> = Lub {<tMpls> |)= 0,1,..}.

Proof. By induction on the structure of 7.
Base step: T is a constant C. This case is trivial since C is interpreted as C in Mp

and in Mp},)2 0.

Induction step: ¥ is a function call of the form fla, . . ., an) where f is a function
symbol in L and @, ..,a areterms that satisfy the lemma. As before, let _[j denote the
interpretation of f in the structure MPJ. If f is not explicitly defined in P (defined by a

recursion equation), then we define [j = ffor all § By the lLub. lemma (Lemma 9):
lub. {<t,Mpd 5> 1)= 0,1, ..} = lub. {<fla;, .. &), Mp s> = 0,1,

- lub. {thea, Myl s>, <@ Mpl) 1§01, ..}
- Lub. [[ka_l, @) [§=0,1,...}
where @, 1 5 1 5 n, denotes Lub.{<a, MpK, s> |k = 0, 1, ..).
Our induction hypothesis states that for 1 s i < n, lub.i<a, MP-‘, $>11=0 ..} =
<a‘, MP' s>,
Hence by the induction hypothesis and the construction of f,
Lub. <f, Mpl, 51 = 0,1,..} = lub. {f<a,, Mp, 55, ... <a, Mp,) 1] = 0, 1, ..}
- l(<al, MP’ 83 o <A, MP’ $>)
= <ﬂal, “ an), MP' s>
= <7, MP, $H

QED.

A description and justification for each axiom in the theory Ap for the structure M, follows.
Many of the axioms are immediate consequences of the construction of Mpl In that case, I
will simply state "immediate” as the justification.

1. Primitive data type axioms.

32

Ap: An Axiom System for the Standard Model Page 37

For distinct constant symbols Cp Ct'
C=Co '

Justification: Immediate, since C, C, are interpreted by the distinct ob jects Cp _(_23.
respectively. < ol

For every constant symbol C except w, NIL, TRUE, FALSE, ZERO:

C: atom. 3

o

{
Justification: Immediate, since the only primitive ebpcu in IMPI not belonging to

type atom are NIL, TRUE, FALSE, ZERO, and . -

For each constructor definition «(¢) where ¢ is a constructor and @ is a list of
selector-declarations.
Vx [x: ¢ > x-:atom)

Justification: In IMPI a constructed ob ject of type ¢ belongs to to type T if and only if
¢ s T. By the definition of the s relation on type names [See Section 2.2], ¢ ~< atom.

For every constant symbol C except w (i.e any capital-identifier):
Vx [x=C » x:C}

Justification: In M| the only ob ject defined as an element of type C (where C is any
capital-indentifier) is C.

= NIL: atom

= TRUE: atom

- FALSE: atom

= ZERO: atom
Justification: Immediate.

VX [x:any = xww}

Justification: Immediate from the definition of Mpland is-T.

For every type T defined in P:
w: T eow

Justification: Immediate from the definition of Is-T.

1

32

Ap: An Axiom System for the Standard Model Page 38

2. Union axioms.

For each data type name T o defined as a union (disjoint union, enumeration, or recursive

union) of the types T, Too s Ty

Vx [)(:To - x:Tlvx:Tzv...vx:Tn].

Justification: Immediate consequence of Corollary 2.2.

3. Construction axioms.

a. For each construction definition c(s|: TI' Sgi T2' RRRE A Tn)

1

VX Xgs Xy [x: Ty A Xgt T2 Ao..Ax T o c(xl. Xgp wn xn): c}
Justification: Inmediate from the definition of IMPI.
Vyly:c > c(:l(y), :20). e $p(¥) =)

Justification: From the definition of Mpl. we know that an object y belongs to

the constructor type ¢ if and only if y = c(xl, +X) for some xl, o Xp € Mpl

Furthermore, the definitions of the constructor and selector functions in MP assert

that c(x|... w Xp) = o(x,..x), and ’l(‘(xl" X)) = Xp I s1 s n. Consequently,
y= c(xl, X) c(x'... .xn) g(sl(y). -Jn(y».

proving g the desit desired result.

Vy [y: ¢ ::’(y): le (for j=1,2,...,n).
Justification: Immediate from the construction of IMPI.

Vx'.xz. o Xy [xlx 1'l A Xyt T2 A AX S Tn E) ‘J (c(xl. Xgo wr xn)) . xj]
(for j=1,2,...,n)

Justification: Immediate from the construction of IMPI.

b. For any distinct constructors ¢ P 69

Vx [x: ¢ 2 x= c2]

3.2 Ap: An Axiom System for the Standard Model Page 39

Justification: Since ¢, and ¢o are distinct minimal types,

they must be dis joint (by Lemma 7). ;
4. Induction axiom schema. 1

For any formula B(x) with the single free variable x:
Vy [vx [xey > B(x)] > B(y) > Vvz(B@))
where f(y) is an arbitrary formula with the single free variable y.

Justification: This axiom schema simply asserts that the induction principle holds for the
domain [Mp| under the partial ordering < (at least for statements expressible in Lp). By

Lemma 10, the partial ordering c is well-founded. Consequently, the rule is valid.
5. Axioms for equals, not, or, and:

Vx [x«w = x equals x = TRUE].

VX,y [X#y A X#w A y»w = x equalsy = FALSE]
Vx [w equals x = w].

Vx [x equals @ = w).

not TRUE = FALSE.

not FALSE = TRUE.

notw = w.

Vx [x=: boolean > not(x) = w.

TRUE and TRUE = TRUE.

TRUE and FALSE = FALSE.

FALSE and TRUE =« FALSE.

FALSE and FALSE = FALSE.

Vx [wand x = w)

Vx [x and w = W)

Vx,y [x-: boolean v y~: boolean » x andy » w]
TRUE or TRUE = TRUE.

TRUE or FALSE « TRUE.

FALSE or TRUE = TRUE.

FALSE or FALSE = FALSE.

Vx [worx = w)

Vx[xorw = w)

Vx,y [x=: boolean v y=: boolean ® xandy = w]

PITFrLPOIITFETTO@SNAN O

Justification: Immediate.

6. Axioms for € (containment).

32

Ap: An Axiom System for the Standard Model Page 40

a. For each construction definition o(s\: T, 55: Ty, ..., S T,
I VyXx Xo, X, ly = e(x,, Xgs v n) Aysd > X jcy]
for j=1,2,...,n
2. VY X Xg X [(y=ex; A ymx)) A (y-«:x2 A y-xz) AcoA(y=ex, Aymx)
EY y-cc(xl. ey xn)].
VX [x»#w > x-~eXx])
Vx,y.z [xcy A yer > xeci}
Vx [wex = w)
For any constant C other than w:
VX [x#w > x-cC)

o opn o

Justification: Immediate from the definition of .
Axioms for case.

For each type identfier T defined in P as the disjoint or recursive union (including
enumerations) of the data types T, Ty, ..., and T :

& VyX XonX ly:T; > Teaseyof Tyixp,TpXso, T oix, = x,]

fori=12...,n
b. Vyx Xo..X, [~(y: T) > Teaseyof TiXpi TipX o TpiX, = @)

Justification: Immediate from the definition of case-T.

Function definition axioms.
For each function definition
function flx: T\, ..., x:T)k Ty E(x'. o %)
where f is a function identifier; x,, ..., x are variables; T, T,, ..., T are types; and

§(x,, .., x.) is an expression containing no variables other than x,,..., x_.
1 n P g i n

a Vxl.xz. X [-(xlz Tl) V...V "("I’Tn) > ﬂxl. i xn) = W)

Justification. This axiom asserts ‘ﬂ"l’"’xn)'MP'” equals w if s maps some xp 1sisn,
into some ob ject not belonging to type 7' But this is a trivial consequence of the fact that

[1s undefined (w) if any of its arguments is of the wrong type.

b. VX Xg Xy (Xt T AL AXST, Soxp e x)e E(xl, o X))

32 Ap: An Axiom System for the Standard Model Page 41

Justification: Inmediate from Theorem 8.

3.3 Completeness of the Axiom System Ap

We have established that M, is a model for Ap,. However, this fact is still no assurance that
Ap is a satisfactory axiomatization for M. Some important properties of Mp may not be
specified by Ap. By the completeness theorem for first-order predicate calculus, we know

that a formula @ in L, is provable from Ap, if and only if & is true for all models of Ap.

Consequently, examining other models of A, gives us some hints about the completeness of

our axiomatization of Mp, (by Godel's incompleteness theorem, it cannot be fully complete).
First, let us look at the alternate models for AP on the standard domain IMPL Axiom

group 8 asserts that all explicitly defined functions in P are call-by-value fixed-points of
their defining recursion equations. Nothing in these axioms restricts their interpretations to
the least call-by-value fixed-points. As a result, any set of call-by-value fixed-points is a
valid interpretation for the explicitly defined function symbols of P.

For example, let P be some TYPED LISP program containing the following function
definition:

function loop(x: natnum): natnum » loop(x)

The interpretation for loop in the standard model is the everywhere undefined function.
However, any function mapping Mp| into Mp] which is undefined for non-integers is a

valid interpretation for loop. Consequently, we cannot prove anything about the function
loop other than the trivial fact that it is undefined for non-integers.
In general, the axiom set A, is strong enough to prove the totality of almost any total

TYPED LISP function (obviously, we can’t escape the fundamental incompleteness inherent
in any recursively-enumerable theory dealing with the termination of arbitrary programs), it
cannot prove the non-totality of TYPED LISP functions which are undefined for some
inputs, or that equivalent non-total TYPED LISP functions are equivalent--except for a few
special cases. However, 1 do not think this weakness of my semantics is a serious
disadvantage in practice. Very few functions appearing in everyday programs have domains
which are not recursive (interpreters seem to be the most prominent exception). Consequently,
if the data type definition facility in a programming language is powerful enough to define
any recursive set as a data type, nearly every function encountered in practice can be written
as a total function on user-defined data types. (TYPED LISP currently does not have this
power, but it could easily be extended so that it did.) Moreover, in order to handle the rare
cases where partial functions are of practical significance, it is possible to write recursive
definitions for partial functions which have unique call-by-value fixed-points (the trick is to

33 Completeness of the Axiom System Ap, Page 42

create recursive functions which return computation sequences rather than single values).
Syntactically characterizing important classes of recursive definitions which have unique
call-by-value fixed points is an interesting topic for further research.

The other non-standard models of interest are those which have domains which are
extensions of lMPL While the axioms in AP specify the characteristics of every user-defined

type of P in detail, they make no restrictions on the objects belonging only to type any.

Consequently, if we extend the program P to P* by adding some new data type and function
definitions, the structure Mpx is a model for Ap, if we exclude the interpretations for the new

function symbols (function symbols not included in Lp). As a result, any provable theorem

for P is true for P*. Viewed from the perspective of proof theory, the same result is even
easier to derive. For any program P* that is an extension of P, the axiom set Ap Is a subset
of the axiom set Apx (axioms corresponding to a particular function or data type definition

are generated independently of the definitions context). Hence, any theorem provable from
Ap is provable from Apx. Since Mpx is model for Ap*, we conclude that any provable

theorem for P is true for P*.

4 Page 43

CHAPTER 4

A NATURAL DEDUCTION SYSTEM FOR TYPED LISP

4.1 Introduction

Since proving theorems in L, using a standard first-order deductive system is an exceedingly
long and tedious task, I have developed a natural deduction system Np for proving
quantifier-free theorems in L, from the axiom set Ap. Restricting the programmer to

proving quantifier-free theorems does not seem to be a serious limitation. The programmer
can convert any statement involving quantifiers to quantifier-free form by using skolem
functions, assuming he can write TYPED LISP definitions for the skolem functions
introduced.

In the deduction system Np, proofs normally proceed backwards from the statement to

be proved (called a goal) by matching the goal with the conclusion of a rule reducing the
proof of the goal to the proof of the rule’s premises (called subgoals) which presumably are
easier to prove. Although Np is designed only to prove quantifier-free formulas, we cannot

entirely eliminate quantifiers from Np, since quantifiers are required for the statement of
induction hypotheses appearing in Ny, proofs. There are no other exceptions to the ban on

quantifiers. Henceforth, we will refer to quantifier-free formulas simply as formulas.
For the sake of simplicity, let us adopt the following notation for statements in Np. Al

statements in NP have the form A | 8, where B is any formula and A = (al. At an} is a

(possibly empty) set of hypotheses which are formulas or induction hypotheses. A | 8 is
~simply a compact notation for the L, formula «¢A ... A&t 2 B. Induction hypotheses have

the form Vxl.....xn[A | A) where A | @ is a statement. We will use the customary notation for
substitution into expressions and formulas. Given the expression or formula 7, the variable
x, and the expression T; 7: denotes the result of substituting 7 for every free occurrence of x

in 9. We will use the analogous notation A"‘ to denote the result of substituting r for every
free occurrence of x in the hypothesis set A.

[

4.1 Introduction Page 44

We define the formal system Ny, for proving theorems A | 8 as follows:

1. {} | TRUE is provable (i.e. is a theorem).

2. Any other goal A | 8 is provable in Np if and only if there is an inference rule in Np

with conclusion A | 8 and premises A, | B, ..., A | B , where the premises are
provable.

The proof system NP has four classes of inference rules: expression simplification rules,

formula simplification rules, goal simplification rules, and general proof rules. While it is
possible to derive every rule of N, from the axiom set A, and standard first-order predicate

calculus deduction, it is a tedious, uninteresting task. I will follow the simpler course of
verifying the truth of the rules for the standard model M. Since all of the simplification

rules (expression, form1la, and goal) follow immediately from the definition of My and the

definition of truth for first-order languages, their justifications are omitted. A description of
the rules in each of the four classes follows.

4.2 Expression Simplification Rules

Expression simplification rules have the form B | El =) E2 where B = {pl. ooy An) is a set of
formulas, and £, £, are TYPED LISP expressions. The rule B | §; = 52 means that any
occurrence of the expression £, in a goal A | 7 may be replaced by E2 provided that B is a

subset of A. Formally, the original goal A | ¥ is the conclusion of the inference rule and the
transformed goal is the premise. The expression rules of Np appear below:

I. For any expressions &, £, ¥:

W} | ¥ =» TRUE
{} | if TRUE then E| elsefz) 51

{} | if FALSE then fl else Ez =) Ez
{} | if @ then El else ‘2 o W
(¥ -~ boolean} | if ¥ then § elsef, » w

2. For every type T that is a type-union of subtypes T, ..., T; and any expressions §, &, .

il

42 Expression Simplification Rules Page 45

3

(E:T'} i rmetof'rl:el Tn:En = el (fori=1,..,n)
~T) | TcaseEole:fl...Tn:En » @ (fori=1,..n)
{y | Tcaseuoleztl...Tnxfn o w

For any expressions El, E2, v

€ =& 1 & equals £, » & :any

{51-52] | & equals £, = not[t :any and E2uny]
{¥ : boolean} | ¢ equals TRUE = ¢

{¥ :boolean) | TRUEequalsy = ¢

{¥ : boolean} | ¢ equals FALSE = not [¢]

{¥ : boolean} | FALSE equals ¢ = not [¢)

{} | ¥e¥ o not(¢:any)

by | &<k = FALSE

151'52} | Elcfz = not [El:any]

€ <k 1 k<t - FALSE

. For any expressions §, ¥ and any types Ty T2 such that no data ob ject of type T, ever

occurs structurally within an ob ject of type 1‘2 (a property which is easily determined from
the data type definitions):

€:T¥:Ty} | key¥ » FALSE.

For every construction type definition C(S;: Ty, ..., S : T) and expressions El. iy En'
and "l""'*n:
(Elzrl. Enzrn.wlxrl....wn:rn} |
C(kp . &) equals CW, .. ¥) = € equals ¥ and ... and €, equals ¥
ek, . k):cy | Eeck,..&) » TRUE (fori=1,.,n)

For every rule which rewrites an expression of the form § equals ¥, there is a dual rule
with the identical premises which rewrites £ nequals ¥ as the opposite boolean value,
Similary, for every rule rewriting an expression of the form § c ¢, there is a dual rule
rewriting £ ~c ¢.

For any primitive ob ject (capital identifier) ¢, any data type T, and any expressions §, ¥:

{} | ¢:T = TRUE (whencisa member of T)

42 Expression Simplification Rules Page 46

{} | ¢:T = FALSE (when cis not a member of T)
{} 1 &:c o Eequalsc

£~T} | &:T =» FALSE

{£:T) | &~T = FALSE

{£ :any, ¥:any} | [£ equals ¢): boolean > TRUE
{€:any, ¥:any} | [£ nequals ¥): boolean > TRUE
{E:any,¥:any} | [£c¢):boolean s> TRUE
{€:any,¥:any} | [£~c¢¥):boolean « TRUE
{¢:any} | [£:T):boolean = TRUE

{€:any} | ([§-:T]:boolean = TRUE

{£ : boolean, ¥: boolean}) | [and ¥): boolean => TRUE
{£ : boolean, ¥: boolean} | [or ¥]: boolean = TRUE
{£ : boolean} | [not §]: boolean => TRUE

8. For any expression £ and any types Ty T2 where T', is a subset of type T?-
&: T, | ¢ :Ty = TRUE

9. For any expression § and any disjoint types Tl' T?-
¢: T | E: Ty = FALSE

10. For every construction type definition C(S; : T, ..., S :T)and expressions §,,..., £ :

(slzrl. zn:rn} | C(El.....En)xC » TRUE

11.For every rule which rewrites § : T there is a dual rule with identical premises which
rewrites § ~: T as the opposite boolean value.

12. For any expressions §, ¢ and any type T

$and TRUE = ¢
TRUEand¢ = ¢

¢ and FALSE = FALSE
FALSE and ¢ « FALSE
tor TRUE »» TRUE

{£ : boolean)
{£ : boolean)
{£ : boolean}
{£ : boolean}
{£ : boolean)

{€ : boolean}) TRUEor§ «» TRUE

{£ : boolean) tor FALSE = ¢

{€ : boolean}) FALSEor ¢ « ¢

{} | not FALSE s> TRUE

{} | not TRUE s FALSE

{} | notftand¢) = not [£)or not [¥)
{} | notfkory¥) = not[E)and not [¥)

—

42 Expression Simplification Rules Page 47

{¢ :boolean} | notnot[f) « ¢

{} | not[tequalsy) = £ nequalsy
{} 1 not[nequals) = §equalsy
{} 1| notfkey) » E-cy

{} | notfk~cy) » ey

{} | not(d:T) » t~T

{} | not[k~T)] =» &:T

18.For any variable x and any expression § which does not contain x:

ix«& | x = ¢

14.For any expression § and any data object [(i.e. a primitive object or a constructed data

ob ject)
k=0 1 ¢t ot

15.For every function F(including all selectors, constructors, and the operators equals,
nequals, ¢, ~c, and, or, not, :T [for any type T, and ~T [for any type T']) with domain T,

X ...x T _; and any expressions El. o En:
{Ei ~T) | F(El. tn) » w (fori=1,.,n)
{El - w} l F(Elt ey En) D (for i= l, oy ﬂ)

4.3 Formula Simplification Rules

Formula simplification rules closely resemble expression simplification rules; the only
difference is that they rewrite formulas instead of expressions. A formula simplification rule
has the syntax B | o » «, where B is a set of hypotheses, and @, a are formulas. Tne

rule B | ®; ®> «, means that any occurrence of the formula &, in a goal A | ¥ may be
replaced by a, if B is a subset of A. Since expressions can abbreviate formulas in our

first-order language, expressions denoting formulas may be rewritten by formula simplication
rules. A list of the formula simplification rules in Np, follows: '

I For any expressions £, £

{} | w = FALSE
(€, ~: boolean} | £ w FALSE

{11 EI'EI = TRUE

. For every construction type definition C(Sl: Tpooos Sy Tn) and expressions § P ¢

43 Formula Simplification Rules Page 48
=&} 1 k =k » FALSE
6= &) | & =& o FALSE
ek} 1k =F o FALSE

(€y:any} | wef, = FALSE
(€ :any} | & =w = FALSE
{1 | E=TRUE » §

{} | & =FALSE » not[f]
{} | TRUE=§ w» §
{11 l"’ALSE-El = not [El]
{11

{r |

El equals £2 » El . 52 A El : any
€ nequais§, o § « b ak): any:A £ : any

t

. For any expressions El' E2 and any disjoint types T, and T2:

{El:Tl. E2:T2} | El-£2 = FALSE

. For every formula rule which rewrites a formula of the form ¢ = ¢ as a, there is a dual

rule with the same hypotheses which rewrites § » ¥ as -a.

nl

and "l' Foes ,&n:
k. k):C C¥y W)l |
C(El' (LU tll) = C(‘l' Se%y *I\) =) El'*l A...A En"’n

. For every formula a, f; and every expression §, ¥:

{c} | ¢« = TRUE

{~«} | « ® FALSE

{}] | TRUEAx ®» «

| « ATRUE » «

| FALSE Ao« s> FALSE
| « AFALSE s> FALSE
| TRUEv« = TRUE
| «vTRUE & TRUE
| FALSEve ®» «

| «vFALSE » «

T — —— — o~ — —
W Nt S -~ —

43 Formula Simplification Rules Page 49

{} | FALSE>« = TRUE
{} | TRUEDx ®» &

{} | «>TRUE = TRUE
{}] | «=TRUE ®» «

{} | TRUEsx » «

{} | «=FALSE » -«

{}] | FALSEw o ®» =«

{} | ~=TRUE = FALSE
{} | =FALSE = TRUE
(b1 ~k=¥) » Eny

{(} | ~¢k=y) = &=y

{t :boolean} | -t = not[f)
EL] s ey

{} | ~(ecAp) ® -xcv-p
{} | ~(etcvp) = =ecA-g
{} | ~(x>8) © «A=gp

4.4 Goal Simplification Rules

The goal simplification rule denoted

Ala -> B |8,
matches goal A | e¢ and rewrites it as B | 8. Formally, B | A is the premise of the rule and A |
o is the conclusion. The three goal simplification rules of Np, are:

AVU{TRUE} | 8 > A | B
A U{FALSE} | 8 -> {} | TRUE
AUfarny} | B8 > AVfa, v} | B

where A is any hypothesis set, and §, &, ¥ are any formulas.

4.5 General Proof Rules

We will use Gentzen's notation to express many of the general proof rules of Np. His
notation for the inference rule with conclusion | B and premises Al ﬂl. veer A ﬂn is:

Ap 1By ... A 1B

ALB

The rules of Ny, and their justifications follow:

45 General Proof Rules Page 50

1. Equality substitution rule. The following expression rewrite rules may be applied to any
goal with a hypothesis set including the formula §,=,:

ok
b =&

Justification. Immediate from the definition of truth for tirst-order formulas.

Although these rewrite rules resemble expression simplification rules in form, their
intended use is different. Simplification rules are designed so they may be applied
universally as part of a simplification procedure. Obviously, the rewrite rules above must
be applied selectively.

2. Transitivity of < rule. For any expressions £, € &g any hypothesis set A; and any

formula §:

AU tEyey byety bicky) | 8

Justification. Immediate from the definition of the function € in Mp.

3. Rule of consequence. For every goal A | 8 and formula a:

Ala AUfa} | B
A|B

Justification. Inmediate from the definition of truth for first-order formuias.
4. Hypothesis deletion rule. For every goal A | 8 and formula a:
A|B
AVia} | B
Justification. Immediate from the definition of truth for first-order formulas.
5. Replacement rule. For any expression § any type T, any formula f, and any hypothesis

set A such that no variable in § is bound in A (Le. appears bound in an induction
hypothesis).

- Type split rule. Let T be the union of types T|,..., T

4.5 General Proof Rules Page 51

AU{xT} | B, A | &T
Aglﬂ?.

Justification. Inmediate from the definition of truth for first-order formulas.

n For any hypothesis set A, any

formula B, any expression §:

Avik:T) 1BAu{E:Tn}Iﬂ. A|t:T
A B

Justification. An immediate consequence of Corollary 2.2.

. Formula split rule. For any formula & containing no free variables other than those

appearing in the goal A | f:

AUfa) | B AUt-a} | B
A B

Justification. Immediate from the definition of truth for first-order formulas.

. Construction rule. For any formula @&, any hypothesis set A, any constructor type ¢

defined by the construction (s : T, ..., s: Tn" and any variables x, . . ., X, Which do

not appear in A or a:

x
A:(xl,....xn)u‘xlzrl""'xnxrn, I ac(xl.....xn)
AU{x:c} | a

Justification. Immediate from the definition of the constructor type c.

. Induction rule. Let A | 8 be any goal with free variables Xps o os X not occurring in any

induction hypotheses of A. Let T be any expression containing no free variables other
than those in A | B, and let LTERENE be variables distinct from all free variables in A |

n
B. Then:

Avil'y | 8
AP

General Proof Rules Page 52

where ¥ . Vi

XX X gronX X yeensX
gy [A 'll' nV {lel...-.zn" cr} | 81 g n)

....ln ll,... n

and A* - {all formulas in A, but not the induction hypotheses}.

Justification. This rule formalizes complete structural induction on the value of the
expression T under the well-founded partial ordering €. To demonstrate that thei rule is
valid, we fix the free variables in the goal A | . Let r* denote the corresponding value of
the expression T. Since the partial ordering c is well-founded, we may assume the

induction hypothesis I asserting that the goal A | B is true for all values of the expression

r c r* (In the base case where no such values of the expression T exist, the induction

hypothesis is vacuous) Let x|, .., x . be all the free variables in the goal A | B such that
X, ~, X do not appear free in any induction hypotheses, and let z|, .., z be variables

distinct from the variables of A | 8. Then the goal augmented by the assumption I can be
formally expressed:

Au{l}y | 8

wherel . VI, .. 2 [Axl.....xm v {7Xl,....)(m e f} I ﬁxl"""‘m]
1 m gL Ll LT

The induction hypothesis I* in the rule above is simply an instantiation of I which
eliminates any nested induction hypotheses in L If there are no induction hypotheses in A,
then I and I* are identical. On the other hand, if A contains induction hypotheses 9, ...
", then the new induction hypothesis I itself will contain induction hypotheses ”.I' o N -
corresponding to the induction hypotheses "l' o "m in A. If we instantiate variables
o) X

z_ which are free within "'I' = ".m' as x respectively, then the

el = ¥m n+l’ m'’
instantiations of the inner induction hypotheses "'I’ u q'm are identical to the induction

hypotheses n,, .., 7 in A. Consequently, the instantiated hypotheses may be eliminated,

making the instantiated I identical to I*.

10. Induction instantiation rule. Let "l' o zn[G U{rcu} | 8) be an induction hypothesis

in the goal A | B where G = {‘71. s .-yk}s let B by be expressions containing no
variables other than the free variables of A | §; and let 4 denote the formula YiA--A

Y A (v ¢). Then:

tamre

r—

45 General Proof Rules Page 53

AL Ein Aurlr "n} | 8
lrn“ lv-

A B

Justification. Immediate from the definition of truth for first-order formulas.

11. Expansion rule. Let
f(x Tl.....x : T):T-f(xl.. v Xy)

be a function-definition in P. Then for any goal with a hypothesis set contalning the

formulas €,: T, .., £ : T, , we have the expression rewrite rule:

Sy k) oty 6
Justification. Immediate from Theorem 3.

This proof rule is identical in form to an expression simplification rule. However, in
practice it must be applied selectively while simplification rules are applied universally.

12.Lemma rule. A provable goal {8, .., 8,} | 7 serves as a lemma in following rule. Let
denote the formula 8, A .. A §,. For any goal A | 6:

Avir' 18 A @801y
AlB

where ¥* and 8* are identical to ¥ and 8, respectively, when the free variables in the
latter terms are replaced by a set of expressions containing no variables other than the free
variables in A | 8.

Justification. Immediate from the definition of truth for first-order formulas.

The most interesting feature of Np Is the power of the induction rule. It allows not only

complete induction on the structure of any variable in an assertion, but complete induction on
the structure of an arbitrary expression. The strength of this rule permits much simpler
correctness proofs of functions with complicated recursive structure such as a function which
sorts by successive merging (see Section 5.3).

A —

el o L a

5 Page 5¢

CHAPTER 5

THE IMPLEMENTED VERIFICATION SYSTEM

5.1 Introduction

While a pure natural deduction system like Np is a great improvement over standard

first-order deduction systems, it is still not a convenient tool for formally proving interesting
theorems about TYPED LISP programs. Proof of non-trivial theorems are too long and
complicated to be feasible without some mechanical assistance. Consequently, I have
developed TLYV, an interactive verification system for TYPED LISP (TLV is an acronym for
TYPED LISP Verifier), which helps the user construct proofs. My main design goal in
creating TLV, was to automate as many of the straightforward steps in a proof as
possible--without letting the verifier get trapped in infinite loops or enormous searches in
non-trivial cases. Consequently, TLV requires programmer guidance to prove some theorems
which some other verifiers such as Boyer and Moore’s can prove completely automatically.
However, my verifier can prove theorems far beyond the capabilities of completely automatic
verifiers with only a modest amount of direction from the programmer. Furthermore, TLV
terminates within a reasonable amount of time after every user command.

5.2 Structure of the Verifier

The top-level of the verifier is a command interpreter which accepts instructions from the
user. To verify the program the user first instructs the verifier to read the program from a
specified file. The verifier responds by parsing the program and constructing a semantic
representation (if the program contains no syntax errors) for future use by the verifier. The
verifier also generates a set of lemmas (called syntax lemmas) stating each function in the
program not declared partial always terminates and returns an object of the proper type.
After the verifier has parsed the program, the user types in the theorems he wants to prove
and any lemmas he expects the proofs to require. At this point, the user is free to attack the
proofs of theorems and lemmas in any order that he wishes. The verifier keeps track of all
the dependencies (lemmas used in the course of a proof) of each lemma or theorem that he
proves, preventing any circularity. When the user attacks a particular lemma or theorem, the

e

52 Structure of the Verifier Page 55

verification system de-activates any lemmas that depend on the selected goal. Furthermore,
the user has the option of de-activating any lemmas that would otherwise be applied
automatically.

To prove a theorem, the user specifies the ma jor steps in the proof, one at a time, and
the verifier simplifies the new goals generated by each step, reducing many of the new goa's
to { } | TRUE. Al proofs proceed backwards from the goal to be proved by successively
replacing each new subgoal by a set of simpler subgoals until no subgoals remain which do
not simplify to the form { } | TRUE. Since the verifier is completely interactive, the user has
the option of backing up an arbitrary number of steps within his current proof and trying a
different sequence of proof steps.

There is a very close correspondence between the proof steps available on the verifier
and the general proof rules of Ny, The major difference is that the construction rule and

expansion rule are not an available proof steps; they are automatically applied by the
simplifier. Minor differences are discussed in the TLV User's Manual, APPENDIX 2.
The heart of the verifier is a goal simplifier which performs the following functions:

L. It reduces the current goal by applying the simplification rules of N, and an optional

collection of rewrite rules (lemmas) provided by the user.

2. It expands function calls when either the expanded expression can be simplified, or the
expanded expression itself is a function-call.

3. If the hypothesis v : T appears in the goal, the simplifier applies the construction rule to
variable v.

Before the simplifier can apply a simplification rule or a rewrite rule, it must verify that all
the type constraints of the rule are satisfied. Consequently, the simplifier includes a type
evaluator which takes an expression ¥ and determines the smallest type containing ¥ given
the goal hypotheses, syntax lemmas, and type rules (lemmas) provided by the user.

User-provided rules can have one of the following forms:

1. AVA*) El = E2 (an expression rewrite rule) where all the the free variables in A U {EZ}
occur in A* U {{l}.

2. AUA*Y ﬂl = ﬂ2 (a formula rewrite rule) where all the the free variables in A U {ﬂ2}
occur in A* U {ﬂ|}.

3. AUA®|E:T (atype rule) where all the free variables in A occur in A* U {§).

Formally, user-specified rules are simply statements in N, employed as lemmas. The symbol

">" has fio logical significance; it is only syntactic "sugar” making the directionality of the
statements as rewrite rules clear.

52 Structure of the Verifier Page 56

The simplifier attempts to apply a particular expression or formula rewrite rule by
performing the following pattern-matching procedure.

1. It tries to match the left hand side of the rule’s conclusion against an expression or
formula ¥ in the current goal. In order for the match to succeed, some substitution instance

of the left hand side of the rule must equal 7.
2. If the match in step | is successful, the simplifier applies the matching substitution from

step | to A* and attempts tc match the transformed hypotheses in A* against hypotheses
of the current goal. In order for the match to succed, some substitution instance of the

transformed hypothesis set A* must be a subset of the current goal's hypothesis set.

3. If the match in step 2 is successful, the simplifier replaces the variables in the rule’s
hypotheses by their bound values from the matching operation in steps 1 and 2 and tries
to simplify these hypotheses to TRUE, given all the hypotheses of the current goal.

4. If all the rule’s hypotheses simplify to TRUE, then the rewrite rule is applicable, and the
simplifier replaces the variables in the right hand side ¥ of the rule’s conclusion by their
bound values from the matching operation and substitutes the transformed ¥ for o in the

current goal.

To simplify a goal, the simplifier first simplifies each of the goal's hypotheses and then
simplifies the tonclusion. If one of the hypotheses simplifies to FALSE or the conclusion
simplifies to TRUE, the verifier replaces the goal by { } | TRUE. When simplifying a formula
the verifier generally follows a “top-down” simplification strategy, applying the outermost
matching rule, since it presumably is the most general applicable transformation. In’the
interest of efficiency, this strategy is not followed in every case.

The type evaluator computes the type of given expression ¥ by matching ¥ against the
current goal’s hypotheses, type rules, and syntax lemmas. To match the expression against a
type rule or syntax lemma, the type evaluator applies essentially the same matching algorithm
described above for the simplifier. If more than one type matches ¥, the type evaluator
returns the intersection of the matched types as the expression’s type.

5.3 Demonstration of the Verifier

As a demonstation of how the verifier works, let us trace through a “proof of correctness” for
a TYPED LISP program which sorts a linear-list of natural numbers into non-decreasing
order by successive merging. The program appears below:

type list @« NIL U cons(car: natnum, cdr: list)

[Comment: type list is the set of linear-lists of natural numbers (natnums))
type list_of _cons » NIL U join(hd: cons, th: list_of _cons)

[Comment: type list_of _cons is the set of linear-lists of non-empty lists)

58 Demonstration of the Verifier Page 57

function drop(l: list): list_of _cons =
list case | of
NIL: NIL
cons: join(cons(car(),NIL), drop(cdr(1)))

[Comment: transforms list 1 into a linear-list of single-element lists)
function lequal(x: natnum, y: natnum): boolean s not | yex])
declare function pair_merge(ll: list_of _cons): list_of _cons

[Comment: declares the function pair_merge so sortl can call it; the parser cannot handle

Sforward references)
function sortl(ll: join): list =

list_of _cons casc ti(}l) of

NIL: hd(l)
join: sortl(pair_merge(ll)

[Comment: sorts the natnums contained in the non-empty list_of _cons 11 into

non-decreasing order)
function sort(l: list): list m

list case | of
NIL: NIL
cons: sortl(drop(1))

[Comment: sorts the list | into non-decreasing order)
declare function merge(ll: list, 12: list): list
function pair_merge(ll: list_of _cons}): list_of _cons =

list_of _cons case i of

NIL: NIL
Join: list_of _cons case ti(1l) of
NIL: Il
Jjoin: join(merge(hd(ll),hd(ti(11))), pair_merge(ti(ti(1))))
[Comment: merges successive pairs of lists in the list_of _cons 11}
function merge_cons(l1: cons, 12: cons): cons
function merge(ll: list, 12: list): list =
list case 11 of
NIL: 12
cons: list case 12 of
NIL: It
cons: merge_cons(ll, 12)
[Comment. merges lists Il and 12 into non-decreasing order)
function merge_cons(ll: cons, 12: cons): cons =
if lequal(car(ll),car(12)) then cons(car(1), merge(cdr(11),12))
else cons(car(12), merge(ll,cdr(12)))
[Comment: merges non-empty lists into non-decreasing order)

The TYPED LISP functions used for the purpose of stating and proving that the function

53

Demonstration of the Verifier Page 58

sort is correct are defined below:

function length(ll: list_of _cons): natnum =

list_of _cons case Il of
NIL: ZERO
Join: suc(length(ti(1)))
[Comment: determines the number of lists in tAe list_of _cons 1]

function ordered_cons(l: cons): boolean =

list case cdr(l) of
NIL: TRUE
cons: if lequal(car(l),car(cdr(l))) then ordered_cons(cdr(l))
else FALSE
[Comment: determines whether or not the non-empty list | is non-decreasing)

function ordered(l: list): boolean =

list case | of
NIL: TRUE
cons: ordered_cons(l)
[Comment: determines whether or not the list | is non-decreasing)

function list_ordered(ll: list_of _cons): boolean =

list_of_cons case Il of
NIL: TRUE
Join: if ordered_cons(hd(Il)) then list_ordered(ti(11))
else FALSE
[Comment: determines whether or not every list in the list_of _cons Il is mm-decrcaslng]

function delete(n: natnum, I list): list =

list case | of

NIL: NIL

cons: if n equals car(l) then cdr(l) else cons(car(l), delete(n,cdr(l)))
[Comment: deletes the natnum n from list 1)

function member(n: natnum, I list): boolean =

list case 1 of
NIL: FALSE
cons: if n equals car(l) then TRUE
else member(n,cdr(1))
[Comment: determines whether or not natnum n is a member of list 1)

function permutation(ll: list, 12: list): boolean =

function append(ll: list, 12: list): Jist »

list case Il of
NIL: 12 equals NIL
cons: if member(car(1),12) then permutation(cdr(ll), delete(car(11),12))
else FALSE
[Comment: determines whether or not list Il is a permutation of list 12)

53 Demonstration of the Verifier Page 59

list case 11 of
NIL: 12
cons: cons(car(l1), append(cdr(11),12))
[Comment: appends list 12 to the end of list 1)
function list_append(l: list_of _cons): list =
list_of _cons case] of
NIL: NIL
join: append(hd(l), list_append(ti(1)))
[Comment: appends together all the lists in 1 into a single list)
function list_permutation(ll: list_of _cons, I12: list_of _cons): boolean =
permutation(list_append(l1), list_append(12))
[Comment: determines whether or not tke linear-lists of natnums associated with
list_of _cons Il and 12 are permutations of each other)

The theorems we must prove to establish the correctness of sort are:

theorem @1 x: list
| ordered(sort(x))

theorem ®2 x: list
|- permutation(sort(x),x);

In this section we present the interesting sections of the verifier's proof of theorem el; the
complete correctness proof appears in APPENDIX 1. After the verifier parses the program,
it generates the following syntax lemmas asserting that each function in the program is total
and returns a value of the proper type:

[-1] I list
I drop(l): list_of _cons

[-2) x: patnum,y: natnum
|- lequal(x,y): boolean

(-8] 1k list_of _cons
F pair_merge(il): list_of _cons

[-4] : join
I sorti(): list

(-5) I list
I sort(l: list): list

53 Demonstration of the Verifier Page 60

[-6] 11: cons,12: cons
|- merge_cons(li: cons,12: cons): cons

[-7] 11z Dist,12: list
I merge(l1: list,12: list): list

[-8] II: list_of _cons
|- length(ll): natnum

[-9] I: cons
! | ordered_cons(l): boolean

; [-10] I list
: | ordered(l): boolean

(-11] Ik list_of _cons
|- list_ordered(ll}: boolean

[-12] n: natnum,}I: list
|- delete(n,l): list

(-13] 11: Hist,12: list
l | permutation(i1,12): boolean

[-14] 11: Dist,12: list
I append(11,12): list

[-15] I list_of _cons
[list_append(l): list

[-16) I1: list_of _cons,I2: list_of _cons
|- list_permutation(11,12): boolean

The proofs of all the termination lemmas except for -4 (the termination of the function sort1)
are very easy and are omitted from this paper. However, since sortl uses a non-trivial
recursion scheme, the proof of -4 is slightly more complex, requiring the following lemmas
(automatically invoked by the simplifier):

rule +1 y: join
o1 suc(ZERO)elength(y)
I length(pair_merge(y))clength(y)}>TRUE

5.3 Demonstration of the Verifier Page 61

rule +2 1k join
I pair_merge(ll): join

We omit the proofs of +1 and +2; both are easy. The proof of -4 relative to +1 and +2
appears below:

User command: prove -4
[Comment: this command sets up -4 as the initial goal to be proved)

Verifier response: PROVING -4

IE: join
|- sortl(11): list

User command: induct length(ll)
[Comment: this command applies induction on the structure of the value of length(ll))

Verifier response: NEW GOALS:

(1] It: join
l: length(ll): ZERO
&1 [II: join
length(il)clength(ll)
|- sortl(I): list)
|- sort1(11): list

SIMPLIFIES TO:
| TRUE

[2] Ii: join
ol: length(ll): suc
&1 [If: join
length(i)clength(ll)
[sort1(IF'): list)
F sortl(11): list

SIMPLIFIES TO:
ILhd.car: natnum,llL.hd.cdr: list,l1.tl: list_of_cons

&l (Il join
length(IF)cleng th(ll)

R O | T R P ey rasiee

T (P P PP T

5.3 Demonstration of the Verifier Page 62

| sort1(Il'): list)
I sorti(join(cons(il.hd.car ll.hd.cdr)iL.t)): list

1 GOALS REMAIN TO BE PROVED

The formula labeled &1 is the generated induction hypothesis; all the primed variables in an
induction hypothesis are implicitly universally quantified over the scope of the hypothesis.
The simplifier easily reduces the first goal (the base step of the induction) to } TRUE since II:
join implies length(ll): suc. In the second goal (the induction step), the simplifier exploits the
fact that Il join by creating new variables ll.hd.car, ILhd.cdr, and ILtl and replacing every
occurrence of 1l by join(cons(ll.hd.car,ll.hd.cdr),lL.t1).

User command: type Il.tl
[Comment: this command performs a case split on the type of the variable I1.t1)

Verifier response: NEW GOALS:

(1] IL.hd.car: natnum, ll.hd.cdr: list, 11.ti: list_of _cons
sf 1Ltk NIL
&1 [IF: join
length(IF)clength(1l)
| sort1(Il’): list)
[sortl(join(cons(ll.hd.car,ll.hd.cdr),iL.t)): list

SIMPLIFIES TO:
F TRUE
[2] Il.hd.car: natnum, IL.hd.cdr: list, IL.tl: list_of _cons
o1 1Ltk join
&1 [II": join
length(Il)clength(ll)
E sort1(II'): list]
[sortl(join(cons(ll.hd.car,ll.hd.cdr),]Lt])): list
SIMPLIFIES TO:
| TRUE

LEMMA -4 PROVED RELATIVE TO ASSERTIONS: +1 +2

5.3 Demonstration of the Verifier Page 63

To reduce the second new goal to |- TRUE, the verifier must apply rule +1, rule +2, the
induction hypothesis, and termination lemmas -3 and -7 (which the verifier already knows
are true).

The proof of the main theorem decomposes into three stages. For the first stage we
need the following lemma:

rule +3 y: join
] list_ordered(y)
|- ordered(sorti(y)}=>TRUE

We will prove +3 as the second stage in the proof of theorem e1. The first stage of the proof
proceeds as follows:

User command: prove @l

Verifier response: PROVING el
x: list
|- ordered(sort(x))

User command: type x
[Comment: this command does a case split on the type of x)

Verifier response: NEW GCOALS:
[1] x: list
#l x: NIL
|- ordered(sort(x))
SIMPLIFIES TO:
|- TRUE
[2] x: list
#l x: cons
| ordered(sort(x))
SIMPLIFIES TO:

x.cdr: list, x.car: natnum
|- ordered(sortl(join(cons(x.car,NIL),drop(x.cdr))))

1 GOALS REMAIN TO BE PROVED

L ratdii o LAk iuib e 00 Lismn sin o oo L AL ok ah b b

53 Demonstration of the Verifier Page 64

User command: consequence Iist_ordered(join(cons(x.clr.NlL).drop(x.cdr)))
[Comment: this command applies the rule of consequence using the specified formula)

Verifier response: NEW GOALS:

[1]) x.cdr: list, x.car: natnum
#1 list_ordered(join(cons(x.car,NIL),drop(x.cdr)))
|- ordered(sorti(join(cons(x.car,NIL),drop(x.cdr))))

SIMPLIFIES TO:
[TRUE

[2] x.cdr: list, x.car: natnum
} list_ordered(join(cons(x.car,NIL)drop(x.cdr)))

SIMPLIFIES TO:

x.cdr: list,x.car: natnum
I list_ordered(drop(x.cdr))

1 GOALS REMAIN TO BE PROVED

User command: induct x.cdr
[Comment: this command applies induction on the structure of x.cdr]

Verifier response: NEW GOALS:

(1] x.cdr: list, x.car: natnum
®] x.cdr: NIL
&1 [x.cdr’: list,x.car’: natnum
®] x.cdr'ex.cdr
|- list_ordered{(drop(x.cdr')}»» TRUE}

I list_ordered(drop(x.cdr))
SIMPLIFIES TO:
F TRUE

[2] x.cdr: list, x.car: natnum

53 Demonstration of the Verifier Page 65

®] x.cdr: cons
& [x.cdr”: list,x.car: natnum

#] x.cdr'ex.cdr

|- list_ordered(drop(x.cdr’))>TRUE)
|- list_ordered(drop(x.cdr))

SIMPLIFIES TO:
lF TRUE
PROOF OF e1 RELATIVE TO THE ASSERTIONS: .3
The proof of +2 depends on the following lemmas:

rule +4 n.pred: natnum
- ZEROesnc(n.pred)

rule +5 y: list_of cons
o] list_ordered(y)
|- list_ordered(pair_merge(y)m»TRUE

rule +6 p: boolean, x: boolean
|- if p then x else FALSE => p A x

¢ Since the proofs of +4 and +6 are very easy, they are omitted. The proof of +5 will comprise

the third and final stage of the proof. The second stage of the proof is:
User command: prove +3
Verifier response: PROVING +3

y: join

#] list_ordered(y)
|- ordered(sorti(y))

User command: induct length(y)
[Comment: this command applies induction on the structure of length(y)) -

Verifier response: NEW GOALS:

1] y: join
#l length(y): ZERO
#2 list_ordered(y)

53 Demonstration of the Verifier

&1 [y": join

s] length(y’)clength(y)

#2 list_ordered(y’)

|- ordered(sortl(y"))=>TRUE)
I ordered(sorti(y))

SIMPLIFIES TO:

[TRUE

{2) y: join
o] length(y): suc
2 list_ordered(y)
&1 [y join
o1 length(y')clength(y)
2 list_ordered(y’)
|- ordered(sorti(y"))»>TRUE)
I ordered(sorti(y))

SIMPLIFIES TO:

y-tl: list_of_cons, y.hd.cdr: list, y.hd.car: natnum

o1 ordered_cons(cons(y.hd.car,y.hd.cdr))

2 list_ordered(y.tl)

&1 [y" join
s1 length(y’)clength(join(cons(y.hd.car,y.hd.cdr),y.t1))
2 list_ordered(y")
I ordered(sorti(y"))=>TRUE]

| ordered(sortl(join(cons(y.hd.car,y.hd.cdr),y.t1))

1 GOALS REMAIN TO BE PROVED

User command: type y.tl
[Comment: this command does a case split on the type of y.t1]

Verifier response: NEW GOALS:
[1] y.tk: list_of _cons, y.hd.cdr: list, y.hd.car: natnum
sl y.tl: NIL
2 ordered_cons(cons(y.hd.car,y.hd.cdr))
3 list_ordered(y.tl)
&1 [y": join
o1 length(y')clength(join(cons(y.hd.car,y.hd.cdr)y.t1))

Page 66

53 Demonstration of the Verifier Page 67

#2 list_ordered(y’)
| ordered(sorti(y’))»>TRUE)
| ordered(sortl(join(cons(y.hd.car,y.hd.cdr),y.tl)))

SIMPLIFIES TO:
|- TRUE

[2] y.tk list_of _cons, y.hd.cdr: list, y.hd.car: natnum

#l y.tl: join

2 ordered_cons(cons(y.hd.car,y.hd.cdr))

#3 list_ordered(y.tl)

&1 [y join
#1 length(y’)clength(join(cons(y.hd.car,y.hd.cdr),y.tl))
#2 list_ordered(y’)
| ordered(sortl(y’)>TRUE]

|- ordered(sort1(join(cons(y.hd.car,y.hd.cdr)y.t1)))

SIMPLIFIES TO:
F TRUE

PROOF OF +3 RELATIVE TO THE ASSERTIONS: +1 +2 +5

The final stage of the proof of theorem el presented in this demonstration is the proof of +5.
For this portion of the proof, we need the following lemma about merge_cons:

rule +7 x1: cons, x2: cons

o] ordered_cons(x1)

#2 ordered_cons(x2)

|- ordered_cons(merge_cons(x1,x2))
The proof of +5 follows:

User command: prove +5
Verifier response: PROVING +5
y: list_of _cons
o1 list_ordered(y)
| list_ordered(pair_merge(y)=sTRUE

User command: induct y

53 Demonstration of the Verifier Page 68

[Comment: this command applies induction on the structure of y)

Verifer response: NEW GOALS:

(1] y: list_of _cons
o] y: NIL
2 list_ordered(y)
&l [y’ list_of _cons
#] y'cy
#2 list_ordered(y’)
|- list_ordered(pair_merge(y')=>TRUE]
|- list_ordered(pair_merge(y)=TRUE

SIMPLIFIES TO:
| TRUE

[2] y: list_of _cons
ol y: join
#2 list_ordered(y)
&1 [y’: list_of _cons
o] y'cy
#2 list_ordered(y’)
I list_ordered(pair_merge(y"))=>TRUE)
| list_ordered(pair_merge(y))

SIMPLIFIES TO:

y.th list_of _cons, y.hd.cdr: list, y.hd.car: natnum
o1 ordered_cons(cons(y.hd.car,y.hd.cdr))
#2 list_ordered(y.tl)
&1 [y list_of _cons
1 y’cjoin(cons(y.hd.car,y.hd.cdr)y.tl)
#2 list_ordered(y’)
I list_ordered(pair_merge(y")=>TRUE)
| list_ordered(
list_of _cons case of y.ti
NIL: join(cons(y.hd.car,y.hd.cdr)y.tl)
Join: join(merge(cons(y.hd.car,y.hd.cdr)hd(y.t1)),
pair_merge(ti(y.t)))

: 1 GOALS REMAIN TO BE PROVED

53 Demonstration of the Verifier

User command: type y.tl
(Comment: this command does a case split on the type of y.t1]

Verifier response: NEW GOALS:

(1
y-tk list_of _cons, y.hd.cdr: list, y.hd.cart natnum
ol y.tl: NIL
#2 ordered_cons(cons(y.hd.car,y.hd.cdr))
3 list_ordered(y.tl)
&l [y’: list_of _cons
#1 y'cjoin(cons(y.hd.car,y.hd.cdr)y.tl)
#2 list_ordered(y’)
k list_ordered(pair_merge(y')s> TRUE]
r list_ordered(
list_of _cons case of y.tI
NIL: join(cons(y.hd.car,y.hd.cdr),y.tl)
Join: join(merge(cons(y.hd.car,y.hd.cdr)hd(y.t1)),
pair_merge(tKy.tl))))

SIMPLIFIES TO:
I TRUE

{2] y.tk: list_of _cons, y.hd.cdr: list, y.hd.car: natnum
8l y.tl: join
#2 ordered_cons(cons(y.hd.car,y.hd.cdr))
3 list_ordered(y.t1)
&1 [y”: list_of _cons
#1 y'ejoin(cons(y.hd.car,y.hd.cdr)y.tl)
#2 list_ordered(y’)
I list_ordered(pair_merge(y")=>TR UE)
I list_ordered(
list_of _cons case of y.tl
NIL: join(cons(y.hd.car,y.hd.cdr)y.t1)
Join: join(merge(cons(y.hd.car,y.hd.cdr)hd(y.t1)),
pair_merge(tKy.11))

SIMPLIFIES TO:

¢ TRUE

Page 69

5.3 Demonstration of the Verifier Page 70

PROOF OF +5 RELATIVE TO THE ASSERTIONS: +7

5.4 Capabilities of the Verification System

The sample theorems proved in the previous example are typical of the theorems which the
TLV verifier can prove with a reasonable amount of programmer guidance. Among the
other theorems I have proved using the verifier are: the termination of a program
implementing a unification algorithm (assuming all variables have been renamed), the
equivalence of an iterative algorithm (using a stack) and a simple recursive algorithm for
counting the leaves of a binary tree, the total correctness of an extended version (including
assignment) of the McCarthy-Painter compiler for arithmetic expressions [McCarthy and
Painter 1967), and the total correctness of a very simple set of data base management
functions. An extensive set of examples appears in APPENDIX 1.

5 Page 71

CHAPTER 6

FURTHER WORK

6.1 Improving the verification system

While the TYPED LISP Verifier is capable of proving many moderately hard theorems with
relative little user guidance, it has many deficiencies. In many cases, the current
implementation places too large a burden on the user. Proving a theorem about a non-trivial
TYPED LISP often requires proving a multitude of trivial lemmas (particularly syntax
lemmas) which could be proven completely automatically. In the TYPED LISP verification
system, however, the user must manually prove every single trivial lemma (or accept it on
faith). Although the proofs involved are very short--usually only one or two steps—-it is
annoying for the user to have to worry about proving trivial lemmas at all. Consequently, the
system would be enhanced by the addition of a fast automatic theorem prover which would
attempt to prove--within a designated time limit--all of the syntax lemmas and any other
lemmas or theorems designated by the user. While many simple theorems inevitably would
stump the automatic prover, many would be proved without requiring any user attention.

Another aspect of the verification system which could be significantly improved is the
goal simplifier. Frequently, the simplifier fails to simplify a goal to TRUE because it expands
a function call too soon, preventing a rule match. Following a strict top-down simplification
strategy tends to minimize this problem--but at the prohibitive cost of exceedingly slow
execution. Even when following a faster, less effective simplification strategy the simplifier
runs very slowly. In the course of simplifying a goal, the simplifier continually repeats
simplifications and type computations it has already performed--executing the same laborious
pattern matches each time. A hashed representation for formulas and expressions would
solve this problem. With hashed representations, the simplifier could build tables storing the
simplified form or computed type for an expression after determining it once. Subsequent
attempts to simplify an expression or compute its type would find the answer stored in the
table. Unfortunately, the language in which the verifier is implemented, UCI LISP, has no
convenient hashed representation for formulas or expressions.

6.2 Proving Theorems About Partial Functions Page 72

6.2 Proving Theorems About Partial Functions

At this point in time, none of the theorems proved on the verifier involve partial functions.
As I argued in Section 3.3, partial functions aren’t necessary for most practical programming
applications. But there are important exceptions. For example, proving the correctness of a
compiler for a universal language (in the sense of Church’s Thesis), is a significant practical
application requiring the use of partial functions. The interpreters defining the semantics of
the source and target languages cannot be expressed as total functions on recursive types. In
order to prove interesting theorems about partial functions in the deductive system, the partial
function definitions must have unique least call-by-value fixed-points. If the definitions are
written so the partial functions compute entire computation sequences rather than single
values, then they will have a unique least fixed-point. I hope to use this approach to prove
the correctness of a compiler for a simple procedural language including arithmetic
expressions, assignment, and while-loops.

6.3 Extending TYPED LISP

LISP, in all its current incarnations, is a seriously flawed language for verification purposes.
In contrast to PURE LISP and TYPED LISP, the implemented versions of LISP have
intractable semantics because they include numerous features designed to make the language
more comprehensive and efficient. On the other hand, neither PURE LISP or TYPED LISP
is a suitable language for most symbolic computing applications. They are too restrictive.
There is a glaring need for a variant of LISP which includes enough practical features for
most symbolic computing applications (such as program verification systems), yet excludes
constructs with unmanageable semantics. I think TYPED LISP would make an excellent
starting point for such a language. As I pointed out in Section 1.3, user-defined data types
can significantly simplify the task of writing and verifying programs which manipulate
symbolic data. 1 would like to see an extended version of TYPED LISP implemented,
including the following features not present in the current TYPED LISP language:

l. Input/output operations. ;

2. Global variables.

3. Table functions (equivalent to attaching properties to arbitrary data ob jects).

4. Data type definitions creating types which are unions of all defined types fitting a
particular scheme (permitting, for example, a single append function for data types which
have the form of a list).

Data type definitions creating types which are arbitrary recursive subsets of defined types.
6. Some means for conveniently treating programs as data.

o

Page 73

REFERENCES

Boyer, R. S. (1975) Personal communication.

Boyer, R. S, and] S. Moore (1975) Proving Theorems about LISP Functions. /. Ass. Comput.
Mach. 1, 129-144.

Erderton (1972) A Mathkematical Introduction to Logic, Academic Press, New York.

Hoare, C. A. R. (1973) Recursive Data Structures. A. 1. Memo 228, Computer Science
Department, Stanford University.

Kleene, S. C. (1952) Introduction to Meta-mathematics. D. Van Nostrand, Inc,, Princeton, N.].

Manna Z. (1974) Mathematicat Theory of Computation, McGraw-Hill Book Co., New York,
356-416.

McCarthy, J. (1963) A Basis for a Mathematical Theory of Computation, in P. Braffort and
D. Hirschberg (eds.), Computer Programmming and Formal Systems, North-Holiand
Publishing Co., Amsterdam, 33-70.

McCarthy, J. and J. A. Pa’nter (1967) Correctness of a Compiler for Arithmetic Expressions.
Proc. Symp. Appl. Math. 19, 33-41.

Miiner, R. (1978) Models of LCF. A. 1. Memo 186, Computer Science Department, Stanford
University.

Moore,] S. (1975) Computational Logic: Structure Sharing and Proof of Program Properties.
CSL 75-2, Xerox Palo Alto Research Center, Palo Alto, California.

Park, D. (1969) Fixpoint Induction and Proofs of Program Properties, in B. Meltzer and D.
Michie (eds.), Machine Intelligence, Vol. 5, 59-78, Edinburgh University Press, Edinburgh.

Scott, D. (1970) Outline of a Mathematical Theory of Computation, 4tA Annu. Princeton Conf.
Inform. Sciences & Syst., 169-176.

Scott, D. and C. Strachey (1971) Towards a Mathematical Semantics for Computer Languages,
Technical Monograph PRC-6, Oxford University, Oxford, England.

APPENDIX 1

SAMPLE PROOFS

A 1.1 Example I: Iterative REVERSE

program revl;
type list # NIL U cons(car: atom, cdr: list)

function app(x: list, y: list): list s
list case x of
NIL: y
cons: cons (car (x), app (cdr (x) ,y))

function revl(x: list, yt list): list s
list case x of
NIL: y
cons: revl(cdr(x),cons(car(x),y))

function revix: Iist): list & revl(x,NIL)
-
THE FOLLOWING SYNTRX LEMMAS HAVE BEEN GENERARTED BY THE PARSER:

-1
xilist,ytlist
|- appix,y) 1 list;

-21
xtlist,ytlist
|- revilx,y) 1 listy

-3
xtlist
|- reavix) 1 tisty

theorem ol
xi1iist
|- revirevix))=x;

THEOREM 1 ACCEPTED N
rule 41
xtllst,ytlist

|- revi(revl(x,y) ,NIL)s>revl(y,x);
+1 RCCEPTED

Page 74

ALl Example I: Iterative REVERSE

prove el!

PROVING el
xilist
|- revirevix))sx

CURRENT GOAL:

1
xtlist
|- revirevix))=x

SINPLIFIES TO:

TRUE

PROOF OF el RELATIVE TO THE ASSERTIONS:
+1

UNPROVED RULES: i

UNPROVED SYNTRX LEMMRS: -3 -2 -1

prove +1;

PROVING +1
x:list,y:list
|- revi(revl(x,y),NIL)=>revl(y,x)

Induct x +!

NEN GOALS:

m
xilist,y1list
#1 x : NIL
81 Ix":1ist,y’tlist
1l x* cx
|- revitrevl(x’, y’) ,NIL)s>revi(y’,x’)]
|- revi(revi(x,y),NIL)=revl(y,x)

SINPLIFIES TO:
TRUE

[2)
xtlist,ytlist
#1 x 1 cons
&1 Ix':iist,y’1iist
1 x’ ¢ x
|- revi(revl(x’,y’),NIL)=>revi(y’,x’))
|- revi(revl(x,y) ,NIL)=revl(y,x)

SINPLIFIES TO:
TRUE
PROOF OF +1
UNPROVED SYNTAX LENMAS: -3 -2 -1

prove -1;
PROVING -1

Page 75

A ll

xtlist,ytlist
|- app(x,y) & list

induct x!

NEW GOALS:

88
xtlist,yslist
#1 x 1+ NIL
&1 [x’:t1ist,y’1list
1 x* ¢ x
|- app(x’,y’) 1 list)
|- app(x,y) 1 list

SINPLIFIES TO:
TRUE

(21
xtlist,ytlist
#1 x 1 cons
81 Ix’:list,y’:list
2l x> c x
|- app(x’,y’) t list)
|- app(x,y) : list

SINPLIFIES TO:

TRUE
PROOF OF -1
UNPROVED SYNTAX LEMMAS:

qed;

prove -2;

PROVING -2
xtlist,ytlist
|- revi(x,y) t list

Induct x|

NEW GOALS:

m
x:list,ytlist
f1 x @ NIL
&1 [x"s1ist,y’1list
1l x' ¢ x
|- revi(x’,y’) 1 list)
|- reviix,y) 1 list

SINPLIFIES TO:
TRUE

21

xtlist,ytlist

1 x 1 cons

&1 Ix’stimt,y’s it
1l %' ¢ x

Example 1: Iterative REVERSE

Page 76

A ll Example 1: Iterative REVERSE Page 77

|- revi(x’,y’) 1 list)
|- revii(x,y) 1 list

SINPLIFIES TO:
TRUE
PROOF OF -2
UMPROVED SYNTAX LEMMAS: -3

qed;

prove -3
PROVING -3
xtlist

|- revix) 1 list

CURRENT GOAL:

m
xtlist
|- revix) 1 list

SINPLIFIES T0:

TRUE
PROOF OF -3

qed;

A 1.2 Example 2: Total correctness of FLATTEN

program nflat;

type tree = atom U join(left: tree, right: tree)
type lis: & NIL U cons(car: atom, cdr: iist)

function fast_flatl(t: tree, I: list): list =
tree case t of

atom: cons(t,!)

Joint fast_flatlCleft(t), fast_flatilright(t),1))
function fast_flat(t: tree): list = fast_flatl(t,NIL)
function append(i1l: 1ist, 12: 1ist): list &

fist case 11 of

NIL: 12

cons: cons (car (11),append(cdr(11),12))
function slow_flat(t: tree): list u

tree case t of %
atom: consft,NIL)

joint append(slou_flat(left(t)) slon_fiatiright(t)))

-
THE FOLLOWING SYNTAX LEMMAS HAVE BEEN GENERATED BY THE PARSER:
-1

t:tree, l1list
|- fast_flatl(e, 1) 1 listy

-2)
titres
|- fast_flat(t) 1 listy

[-3)
thrtist, 12501t
|~ sppend(11,12) 1 listy

A 12 Example 2: Total correctness of FLATTEN Page 78

[-4)
titree
|- slom_flat(t) & listy

prove -1;

PROVING -1
t:tree,ltlist
|- fast_flatl(e,1) & list

Induct t!

NEW GOALS:

[$8]
t:tree,l:list
#1 t : atom
&1 [t':tree,!’:1ist
1 ct
|- tast_t1atl(2’,1%) 1)ist)
|- fast_flatl(t, 1) & list

SINPLIFIES TO:
TRUE

2]
t:tree,l:list
#1 1 :)oin
81 [(t’:tree,!’:list
L ct
|- fast_flatli(t’,1’) 1 1ist)
|- tast_flatl(t, 1) ¢ list

SINPLIFIES TO:
TRUE
PROOF OF -1
UNPROVED SYNTRAX LEMMAS: -4 -3 -2

qed;

prove -2;

PROVING -2
titree
|- fast_flat(t) @ |ist

NEMW GOALS:

m
titree
|- fast_tlat(t) ¢ |ist

SINPLIFIES TO:
TRUE

PROOF OF -2
UNPROVED SYNTAX LEMMAS: -4 -3 1

A 12 Example 2: Total correctness of FLATTEN

qed;
prove -3;
PROVING -3

e list, 12000t
|- append(11,12) 1 list

Induct 111

NEW GOALS:

9%}
1t list, 12:1ist
#1 11« NIL
&1 [I1%:1ist, 121 ist
111 c 1l
|- append(117,12%) 1 Iist)
|- append(11,12) 1 list

SINPLIFIES T0:
TRUE

2
Ielist, 12: 118t
#1 11 1 cons
&1 [11’:0ist, 121118t
711" c 11
|- append(11’,12°) ¢ (ist)
|- append(11,12) ¢ list

SINPLIFIES TO:

TRUE
PROOF OF -3
UNPROVED SYNTAX LEMMAS: -4

qed;

prove -4;

PROVING -4
titree
|- slou_flat(t) ¢ 1ist

Induct t)

NEW GOALS:

m
titree
f1 t : atom
&1 [t'stree
1t ¢t
|- slou_flac(t’) & 1ist)
|- slom_flat(t) 5 1ist

SINPLIFIES TO:

Page 79

A 12 Example 2: Total correctness of FLATTEN Page 80

[2) |
titree |
#1 t: join
&1 (t’:tree

71 ct

|- slow_flat(t’) 1 list)
|- slou_flat(t) : list

SINPLIFIES TO:

TRUE
PROOF OF -4

theorem el
titree
|- fast_flat(t)aslon_{lat(t);

THEOREM 1 RCCEPTED

rule +1
titree,ltlist
|- fast_tlatl(t, D=>append(sion_tlat(t), 1),

+1 ACCEPTED

prove +1;

PROVING +1
t:tree,l:list
|- fast_flatl(t, De>append(sion_flat(t),1)

induct t »!|

NEW GOALS:

98]
titree, 1 list
f1 t 1 atom
81 (t’ttree,!’tlist
712 ct
|- tast_flati(t’,1’)e>append(sion_flat(t*), 1))
|- fast_flatl(t,)aappend(sion_flat(t), 1)

SINPLIFIES TO:
TRUE

[2)
titree, ltlist
f71 t 1 join
&1 [’1tree, "t)int
7l 2 ct
|- fast_f1at1(t’, 1")u>append(sion_{lat(t’),1'))
|- fast_flatl(t,1)=append(sion_{lat(t),|)

SINPLIFIES TO:

t.rightitres,t.leftitres,ltlist

A 12 Example 2: Total correctness of FLATTEN Page 81

&1 (t'itree,)’slist
#1 t’ c join(t.left,t.right)
|- fast_flatl(t’, 1")=>append(sion_flat(t’),1’))

|- append(sion_flat(t.left), append(siow_flat(t.right),|))=append(append(
slow_flat(t.left), slon_flat(t.right)),|)

1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:
t.right:tree,t.ieftitree,l:list
&1 (t’:tree,!’:list
#1 ' c join(t.left,t.right)
|- fast_flatl(t’ I')=>append(slion_flat(t’),1’)]
|~ append(slow_flat(t.left) append(siou_flat(t.right),!))=append(append(
slon_flat(t.left) slou_{flat(t.right)), ()

rule +2
xtlist,ytlist,z:list
|- append (append (x,y) ,z) =>append (x, append (y,z)) |

+2 RCCEPTED
CURRENT GOAL:

(1

t.right:tree,t. left:tree,ltlist

&1 (t’:tree,|’:list
#1 t’ c join(t.left,t.right)
|- fast_flatl(t’, 1’)=>append(sion_flat(t®), 1))

|- append(sion_flat(t.left), append(siou_{lat(t.right),!))e=eppend(append(
slowu_flat(t.left), slon_flat(t.right)),)

SINPLIFIES TO:

TRUE

PROOF OF +1 RELATIVE TO THE RSSERTIONS:
+2

UNPROVED THEORENS: el

UNPROVED RULES: +2

qed;

prove el!

PROVING ol

t:tree

|- fast_flat(t)aglon_flat(t)

CURRENT GOAL:

(§8)
t:tree
|~ fast_flat(t)=glou_flat(t)

SINPLIFIES T0:
titree
|~ append(siou_flat(t) NIL)=slow_flat(t)
1 GOALS REMAIN TO BE PROVED
CURRENT GOAL:

titree
|~ append(siow_{lat(1) NIL)=slow_flat(t)

rule +3

Lo ool Biratari i i

A l2 Example 2: Total correctness of FLATTEN

xtlist
|~ append(x,NIL)u>x!

+3 RCCEPTED
CURRENT GOAL:

(§8)
t:tree
|- append(slow_flat(t) ,NIL)=slon_flat(t)

SINPLIFIES TO:

TRUE

PROOF OF el RELATIVE TO THE RSSERTIONS:
+3 42

UNPROVED RULES: +3 2

qed;

prove +2;

PROVING +2
xtlist,yrlist,ztlist
|- append (append (x,y) ,2)=>append (x, append (y,2))

induct x!

NEW GORLS:

(1)
xilist,yslist,zslist
#1 x 3 NIL
81 Ix’tlist,y’1list,2’tlist
1l x' ¢ x
|- append (append (x’,y’) 2’)=append (x’ ,append (y’,z’)) => TRUE)
|- append (append (x,y),z) =sappend (x, append (y,2))

SINPLIFIES TO:
TRUE

2)
xtlist,yslist, ztlist
#1 x 1t cons
81 [x’stiist,y’slist,2’slist
1l x’ ¢ x
|~ append lappend (x’,y’),2’)=append (x’,sppend (y’,2°)) &> TRUE)
|- append (append (x,y) ,2)=append (x, append (y, 2))

SINPLIFIES 70:
TRUE
PROOF OF 2
UNPROVED RULES: +3

qed)

prove +3;

PROVING +3
xtlist

|- append (x,NIL)e>x

Page 82

A 12 Example 2: Total correctness of FLATTEN Page 83 j

induct x !

NEN GOALS:

1
x:list
#1 x 3 NIL
&1 [x’:list
1 x’' cx
|- append(x’ ,NIL)=>x’)
|- append (x,NIL)=x

SINPLIFIES T0:
TRUE

[2)
xtlist
#1 x 1 cons
81 [x’:list
#l x* ¢ x
|- append{x’ ,NIL)=>x'}
|- append (x,NIL)=x

SINPLIFIES TO:

TRUE
PROOF OF +3

A 13 Example 3: Total Correctness of Sorting by Merging

pr6grnn sortl;

type list 8 NIL U cons(carinatnum,cdrilist)
type list_of _cons s NIL U join(hdicons,tis1list_of_cons)
function drop(l:list):list_of_cons &
list case | of
NIL: NIL
cons: Join(cons(car (1),NIL),drop(cdr(1)))
declare function lequal (x:natnum,ytnatnum)ibociean
function ordered_cons(licons)iboolean &
list case cdr(l) of
NIL: TRUE
const |f lequal(car(l),car(cdr(1))) then ordered_cons(cdr (1))
else FALSE
function ordered(ltlist)iboolean &
list case | of
NIL: TRUE
cons: ordered_cons(!)
function |ist_ordered(lltlist_of_cons)tboolean &
list_of_cons case || of
NIL: TRUE
joint If ordered_cons(hd(11)) then |ist_ordered(ti(il))
sise FALSE
declare function pair_merge(iltlist_of_cons)tlist of_cons
function sortl(ll:join)tlist m
list_of_cons case ti(11) of
NIL: hd1 1)
Joint sortl(pair_merge(ll))
function sort(lslist)elist s
list case | of

R S O R S T T v Ty ECNUE S TN o I UV VR ST Py g gy wavm

Al3 Example 3: Total Correctness of Sorting by Merging

NIL: NIL
cons: sortl(drop(l))
function length(ll:list_of_cons)inatnum a
list_of_cons case || of
NIL: ZERO
Join: suc(length(ti(11)))

L]
THE FOLLONING FUNCTIONS RRE UNDEF INED:
pair_merge

lequal
THE FOLLOWING SYNTRX EXCEPTIONS HAVE BEEN GENERATED BY THE PARSER:

[al)

It join

£1 t1Q11) 1+ Join

|- pair_merge(ll; 1 joing

[a2)
licons
|- drop(1) 1 join;

THE FOLLOWING SYNTRX LEMMAS HAVE BEEN GENERATED BY THE PRRSER:

-1
frlist
|- drop(l) : list_of_cons;

(-2]
xtnatnum,y:natnum
|- lequal(x,y) 1 boolean;

(-3
ltcons
|- ordered_cons(1) : boolean;

[-4)
I:list
|-+ordered(1) : boolean;

[-5)
Ililist_of_cons
|- list_ordered(11) : boolean;

[-8)
Itlist_of_cons
|- pair_merge(11) 1 list_of_cons;

[-71
1tjoin
|- sortlClIl) ¢ listy

[-81
Itlist
|= sort(l) 1t listy

-9
Ilt)list_of_cons
|~ length(il) 1 natnum;

program perml;
daclare function permutation(il:list, 12:1ist): boolean
declare function append(ilslist, 12:1ist)s list
function list_append(i:list_of_cons): list &
iist_of_cons case | of
NIL: NIL
Joint append(hd (1), |ist_sppend(ti(l)))

Al3 Example 3: Total Correctness of Sorting by Merging

function list_permutation(il:iist_of_cons, 12:1ist_of_cons): boolean s
permutation(list_append(11),list_append(12))

-
THE FOLLONING FUNCTIONS ARE UNDEF INED:
append
permutation
pair_merge
lequal
THE FOLLOWING SYNTAX LEMMARS HAVE BEEN GENERATED BY THE PARSER:

(-10)
I1:list, 12:1ist
|- permutation(11,12) : boolean;

[-11)
Tl:tist,12:0ist
|- append(11,12) 1 listy

[-12)
f:iist_of_cons
|- list_append(1) : list;

(-131
Ililist_of_cons, l2tiist_of_cons
|- list_permutation(1l,1l) : boolean;

theorem el

x:list

|- ordered(sort(x));
THEOREM 1 ACCEPTED

thesorem 2

xilist

|- permutation(sort(x), x)=TRUE;
THEOREN 2 RCCEPTED

rule +1

yi join

#1 suc(ZERD) c lengthly)

|- length(pair_merge(y)) ¢ length(y)e>TRUE;
+1 RCCEPTED

rule +2

It join

|- pair_merge(ll) ¢ joing
+2 ACCEPTED

rule +3

y: join

#1 |ist_ordered(y)
|- ordered(sortl(y))=>TRUE;
+3 ACCEPTED

prove elj

PROVING ol

xtlist

|- ordered(sort(x))

type x!

Page 85

AlS Example 3: Total Correctness of Sorting by Merging Page 86
NEN GOARLS:

§3]

xtlist

#1 x ¢ NIL

|- ordered(sort(x))
SINPLIFIES TO:
TRUE

(21

xtlist

#1 x 1 cons

|- ordered(sort(x))

SINPLIFIES TO:

x.cdr:list,x.car:natnum
|- ordered(sortl(join(cons(x.car,NIL),drop(x.cdr))))
1 GOALS REMAIN TO BE PROVED

CURRENT GORL:
x.cdrilist, x.car:natnum
|- orderad(sortl(join{cons (x.car,NIL),drop(x.cdr))))

consequence |ist_ordered(join(cons(x.car,NIL),drop(x.cdr)))!
NEN GOALS:

(8%

x.cdrilist, x.cartnatnum

#1 |ist_ordered(join(cons(x.car ,NIL), drop(x.cdr)))
|- ordered(sortl(join(cons(x.car,NIL),drop(x.cdr))))

SINPLIFIES TO:
TRUE
(21
x.cdr:iist,x.car:natnum
|- list_ordered(join(cons (x.car,NIL),drop(x.cdr)))
SIMPLIFIES T0:
x.cdr:list, x.car:natnum
|- list_ordered(drop(x.cdr))
1 GOALS REMAIN TO BE PROVED
CURRENT GOAL:
x.edr:list, x.cartnatnum
|- list_ordered (drop(x.cdr))

Induct x.cdr|

NEW GOALS:

tmn
x.cdrilist x.cartnatnum
#1 x.cdr 1 NIL
&1 [x.cdr’tlist,x.car’inatnum
#1 x.cdr’ ¢ x.cdr
|- Vist_ordered(drop(x.cdr’))a>TRUE)
}= Vist_orderedidrop(x.cdr))

R T R B T T T T a—

A3 Example 3: Total Correctness of Sorting by Merging

SINPLIFIES TO»
TRUE

2]
x.cdr:list,x.carinatnum
#1 x.cdr : cons
81 Ix.cdr’:list,x.car’:natnum
#1 x.cdr’ ¢ x.cdr
|- tist_ordered(drop{x.cdr’))=>TRUE)
|- list_ordered(drop(x.cdr))

SIMPLIFIES TO:

TRUE

PROOF OF el RELATIVE TO THE ASSERTIONS:

+3

UNPROVED THEOREMS: o2

UNPROVED RULES: 43

UNPROVED SYNTRX LEMMAS: -13 -12 -11 -10 -9 -8 -7 -6 -6 -4 -3 -2 -]

qed;

rule +4

n.predinatnum

|- ZERO ¢ suc(n.pred)=>TRUE;
+4 ACCEPTED

rule +5

ytlist_of_cons

#1 list_ordered(y)

|- Vist_ordered(pair_merge (y))e>TRUE;
+5 RCCEPTED

rule +6

p:boolean, xtboo lean

|- 1f p then x alse FALSEs>p and x
+6 ACCEPTED

prove +3;

PROVING +3

y1 join

#1 list_orderedly)

|- ordered(sorti(y))e>TRUE

Induct length(y) !
NEW GOALS:

8))
yt join
#1 length(y) : ZERO
#2 list_ordered(y)
&1 [ly’:join
#1 length(y’) c lengthly)
72 |ist_ordered(y’)
|~ ordered(sortl(y’))=>TRUE)
|~ orderad(sortl(y))«TRUE

SINPLIFIES T0:
TRUE

Page 87

Als Example 3: Total Correctness of Sorting by Merging

21
yt join
#1 length(y) 1 suc
#2 |ist_ordered(y)
&1 [y’tjoin
21 lengthly’) c lengthly)
#2 list_ordered(y’)
|- ordered(sorti(y’))=>TRUE]
|- ordered(sortl(y))=TRUE

SINPLIFIES T0:

y.tit1ist_of_cons,y.hd.cdrilist,y.hd.carinatnum,yt join

#1 ordered_cons (cons (y.hd.car,y.hd.cdr))

#2 list_ordered(y.tl)

&1 [y’sjoin
#1 tength(y’) c length(jointcons(y.hd.car,y.hd.cdr),y.t1))
#2 |ist_ordered(y’)
|- orderad(sortl(y’))=>TRUE]

|- ordered(sortl(join(cons (y.hd.car,y.hd.cdr),y.t1)))

1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:
y.tiriist_ot_cons,y.hd.cdr:iist,y.hd.carinatrum,yi join
#1 ordered_cons (cons (y.hd.car,y.hd.cdr))
#2 \ist_ordered(y.t})
&1 [y’:join
#1 length(y’) c length(join(cons (y.hd.car y.hd.cdr),y.t1))
#2 |ist_ordered(y’)
|- ordered(sortl(y’))=>TRUE]
|- ordered(sortl(join(cons(y.hd.car,y.hd.cdr),y.t)))

type y.t!!
NEW GOALS:

m

y.ti1list_of_cons,y.hd.cdri|ist,y.hd.carsnatnum,ys join

#1 y.t1 1 NIL

#2 ordered_cons (cons (y.hd.car,y.hd.cdr))

#3 list_ordered(y.tl)

&1 [y’:join
#1 tength(y’) c tength(join{cons(y.hd.car,y.hd.cdr),y.ti))
#2 1ist_ordered(y’)
|- ordered(sortl(y’))a>TRUE]

|- ordered(sortl(join(cons(y.hd.car,y.hd.cdr),y.t1)))

SIAPLIFIES T0:
TRUE

(21

y.tltlist_of_cons,y.hd.cdrilist,y.hd.carinatnum,y: join

71 y.tl 1 join

#2 ordered_cons (cons (y.hd.car,y.hd.cdr))

#3 |ist_ordered(y.tl)

&1 [y’tjoin
#1 tengthly’) c length(join(consly.hd.car,y.hd.cdr),y.t1))
#2 1ist_orderedly’)
|- ordered(sortl(y’))s=>TRUE]

j~ ordered(sorti{join(cons(y.hd.car,y.hd.cdr) y.tH))

SINPLIFIES TO:

TRUE
PROOF OF +3 RELATIVE TO THE RSSERTIONS:

Page 88

Al3 Example 3: Total Correctness of Sorting by Merging Page 89

42 +4 41 45 +6
UNPROVED THEORENS: e2

UNPROVED RULES: 46 +5 +4 42 +l

UNPROVED SYNTAX LEMMAS: -13 -12 -11 -10 -9 -8 -7 -6 <6 -4 -3 -2 -]

qed;

prove +4;
PROVING +4

n.pred:natnum

|- ZERO ¢ suc(n.pred)s>TRUE

induct n.pred!
NEW GOALS:

(§3)]
n.pred:natnum
#1 n.pred : ZERO
&1 [n.pred’:natnum
#1 n.pred’ ¢ n.pred
|- ZERO ¢ suc(n.pred’)=>TRUE)
|- ZERO ¢ suc(n.pred)=TRUE

SINPLIFIES TO:
TRUE

21
n.pred:natnum
#1 n.pred 1 suc
&1 (n.pred’:natnum
#1 n.pred’ c n.pred
|- ZERO ¢ suc(n.pred’)=>TRUE]
|- ZERO ¢ suc(n.pred)s=TRUE

SIMPLIFIES TO:

TRUE

PROOF OF +4

UNPROVED THEORENS: o2

UNPROVED RULES: 46 +5 42 41

UNPROVED SYNTAX LEMMAS: -13 -12 -11 -10 -9 -8 -7 -8 -5 -4 -3 -2 -1

qed;

prove +6;
PROVING +6 1
ptboolean, xiboolean

|- 11 p then x else FALSE=>p and x

type p!
NEW GOALS:

183

ptboolean, xiboolean

#1 p : TRUE

|- If p then x else FALSE=p and x

i -

21

SINPLIFIES TO:

A L3 Example 3: Total Correctness of Sorting by Merging

piboolean, xtboolean
#1 p : FALSE
|- 1t p then x else FALSE=p and x

SIMPLIFIES T0:

TRUE

PROOF OF +6

UNPROVED THEOREMS: e2

UNPROVED RULES: 45 42 +1

UNPROVED SYNTRAX LEMMARS: -13 -12 -11 -18 -8 -8 -7 -6 -5 -4 -3 -2 -1

qed;

prove -1j

PROVING -1

Trlist

|- drop(l) t list_of_cons

Induct 11
NEW GORLS!:

11
frlist
#1 1 1 NIL
&1 [1’1list
11 e¢th
|- drop(1’) t Iist_of_cons)
|- drop(i) 1 list_of_cons

SIMPLIFIES TO:

TRUE
#3)]
fitist
#1) 1 cons
&1 [1’t)ist
81 ed
|- drop(1’) 1 list_of_cons)
|- drop(1) 1 list_of_cons

SINPLIFIES T0:

TRUE

PROOF OF -1

UNPROVED THEOREMS: 2

UNPROVED RULES: 45 42 o+l

UNPROVED SYNTRX LEMMAS: -13 -12 -11 -10 -8 -8 -7 -8 -5 -4 -3 -2

qed;

prove -3;

PROVING -3

ficons

|- ordered_cons (1) : boolean

induct !

NEN GOALS:

§8)

licons

&1 [I’1cons
n 1" c

Page 90

A LS Example 8: Total Correctness of Sorting by Merging

|- ordered_cons(1’) : boolean)
|- ordered_cons(l) ¢ boolean

SINPLIFIES TO:

l.cdrilist, l.cartnatnum, licons
81 [1’:cons
#1 I’ c cons(l.car,|.cdr)
|- ordered_cons(1’) 1 boolean)
|- ordered_cons (cons(l.car,l.cdr)) : boolean
1 GOALS RENMAIN TO BE PROVED

CURRENT GORL:
l.cdr:list, |.carinatnum, l1cons
&1 [1*:icons
#1 1’ c cons(l.car,l.cdr)
|- ordered_cons(l1’) : boolean)
|- ordered_cons(cons(l.car,|.cdr)) : boolean

type l.cdrl
NEW GOALS:

m
l.cdr:list, |.carinatnum, l1cons
#1 l.cdr @ NIL
&1 [1’:cons
#1 1* c cons(l.cer,|.cdr)
|- ordered_cons(!’) 3 boolean)
|- ordered_cons(cons(!.car,i.cdr)) : boolean

SINPLIFIES TOs
TRUE

[2)
l.cdrilist, |.cartnatnum, ltcons
#1 l.cdr ¢ cons
&1 ({'icons
#1 1’ c cons(l.car,|.cdr)
|- ordered_cons(!’) : boolean)
|- ordered_cons(cons(l.car,l.cdr)) : boolean

SINPLIFIES TO:

TRUE

PROOF OF -3

UNPROVED THEOREMS: o2

UNPROVED RULES: 45 42 o+l

UNPROVED SYNTAX LEMAS: -13 12 =11 =10 0 =8 -7 -8 -§ -4 -2

qed)

prove -4;

PROVING -4

f1list

|- ordered(l) 1 boolean

type I
NEMW GOALS:

i
1tlist
7111 NIL

Page 91

i n

Als Example 3: Total Correctness of Sorting by Merging

|~ ordered(l) : boolean
SINPLIFIES YO:
TRUE

121

Itlist

#1 1 1 cons

|- ordered(l) : boolaan

SINPLIFIES TO:

TRUE

PROOF OF -4

UNPROVED THEORENS: o2

UNPROVED RULES: 45 2 ol

UNPROVED SYNTAX LEWMRS: -13 -12 -1 -10 -9 -8 -7 -8 -5 -2

qed;
prove -5;
PROVING -5

11:1ist_of_cons
|- Vist_ordered(il) 1 boolean

Induct 111
NEN GOALS:

(1
1itlist_of_cons
f1 11 NIL
&1 [11°s1ist_of_cons
71 11° ¢ 11
|- list_ordered(i1l®) : boolean)
|- list_ordered(il) s boolean

SINPLIFIES T0:
TRUE

2)
11tlist_of_cons
#1 11 s join
&1 [11’:1ist_of_cons
71 11° c 11
|- list_ordered(il’) 3 boolesan)
|- Vist_ordered(i!) : boolean

SINPLIFIES TO0:

TRUE

PROOF OF -5

UNPROVED THEORENS: o2

UNPROVED RULES: +S 42 o1

UNPROVED SYNTAX LEWAS: -13 -12 -11 -10 -9 -8 -7 -8 -2

qed;

prove -7;

PROVING -7

11t join

|- sortl(ll) ¢ list

Page 92

.

Al Example 3: Total Correctness of Sorting by Merging

induct length(11)!
NEN GOALS:

m

112 join

#1 length(11) &+ ZERO

&1 1i’:jain
#1 tength(i1') c tength(it)
|- sortlili’) & list)

|- sortl(ii) 1 list

SIAPLIFIES TO:
TRUE

121

111 join

#1 length(l1) : suc

&1 [I1’:join
#1 iength(11’) c length(11)
|- sortl(lt’) : list)

}- sorti(ii) tist

SINPLIFIES T0:

t1.41:1ist_of _cons,ii.hd.cdriiist, i . hd.carinatmum, i1t join

&1 [11’t}oin
#1 length(11’) c length(join(cons(ll.hd.car,|l.hd.cdr),il.t1))
f- sorti(ii') & tist)

|- sortl(join(cons(ll.hd.car,|l.hd.cdr), i1, 21)) 3 list

1 GOALS REMRIN TO BE PROVED

CURRENT GOAL:
11.t1s1ist_of_cons,!l.hd.cdrslist, |l .hd.corsnatnum, |l join
&1 [11’:)oin
#1 tength(11') c length()oinlcons(ii.hd.car, i .hd.cdr), 1. t]))
|- sortl(11%) ¢ list)
|- sorti(join(cons(il.hd.car,|l.hd.cdr),11.t1)) s |ist

type 11.t1}
NEN GORLS:

1)

11.t1:1ist_of _cons,|l.hd.cdrilist,li.hd.cartnatoum, it join

#1 11.¢0 s NIL

&1 [11’s)oin
#1 length(11’) ¢ length(join(cons(li.hd.cor,|i.hd.cédr),i1.81))
}= sortl(11®) 1 Mist)

|- sorti(join(cons(it.hd.car,ii.hd.cdr),i1.t1)) ¢ fist

SINPLIFIES TO:
TRUE

21
1h.tislint_of_cons,|l.hd.cdriiist, || . hd.cortnatrum, (it join
#1 11.t1 ¢ join
&1 (11’:)oin
#1 length(11’) c length(join(cons(1li.hd.cor,|i.hd.cdr),(1.11))
|- sort1(11%) ¢ 1ist)
|- sortl(join(cons (il .hd.car, |l .hd.cdr),l1.t1)) ¢ list

SINPLIFIES TO:

IR A

|

Al3 Example 3: Total Correctness of Sorting by Merging Page 94

TRUE

PROOF OF -7 RELRTIVE TO THE RSSERTIONS:

+2 +1

UNPROVED THEORENMS: e2

UNPROVED RULES: +5 +2 +1

UNPROVED SYNTAX LEMMRS: -13 -12 -11 -10 -9 -8 -§ -2

qed;

prove -8;
PROVING -8
Iilist

|- sort(l) s list

type (!
NEW GOALS:

(1

1:list

#1 1 ¢ NIL

|- sort(l) ¢ list

SINPLIFIES TO:
TRUE

12)

I:list

#1 | : cons

|- sorttl) s)ist

SINPLIFIES TO:

TRUE

PROOF OF -8

UNPROVED THEORENS: o2

UNPROVED RULES: 45 +2 +1

UNPROVED SYNTRX LEMMAS: -13 -12 -11 -10 -9 -8 -2

qed;

prove -9;

PROVING -8
1islist_of_cons

|= length(il) 1t natoum

Induct 11
NEW GOALS:

1
tltlist_of_cons
#1 11 2 NIL
&1 (11’5 0ist_of_cons
11 el
j= tength(ltl’) 1 natnuml
|= length(i1) 1 natrum

SINPLIFIES T0:
TRUE

(23
11ttt ot _cons

Als Example $: Total Correctness of Sorting by Merging

#1 11 : join
&1 lil’slist_of_cons

711 11° ¢ 1

|- tength(il’) : natnum)
|- length(ll) : natnum

SINPLIFIES TO:

TRUE

PROOF OF -9

UNPROVED THEORENS: 2

UNPROVED RULES: 45 42 41

UNPROVED SYNTAX LEMMRS: -13 -12 -11 -10 -8 -2

rule +7

x:list

|- permutation(x,x)=>TRUE;
+7 RCCEPTED

rule +8

x1 join,y: list

#1 list_permutation(x,dr-p(y))
|- permutation(sortl(x),y)=>TRUE;
+8 RCCEPTED

prove e2j

PROVING o2

xtiist

|- permutation(sort (x),x)sTRUE

type x|

80

xtlist

#71 x 3 NIL

|- permutation(sort(x),x)=TRUE

SINPLIFIES TO:
TRUE

12)

xslist

#1 x : cons

|- permutation(sort (x),x)sTRUE

SINPLIFIES T0:

TRUE
PROOF OF o2 RELATIVE TO THE RSSERTIONS:
+7 +8
UNPROVED RULES: 48 o7 45 +2 ol
UNPROVED SYNTAX LEMAS: -13 -12 -11 -10 -8 -2

qed;

prove +8;

PROVING +8

xs join,yt | ist

#1 1ist_permutation(x,drop(y))

Al3 Example 3: Total Correctness of Sorting by Merging Page 96

|- permutation(sortl(x),y)=>TRUE

rule +9
xtlist_of_cons,ytlist_of_cons
#1 1ist_permutation(x,y) 3
|- list_permutation(pair_merge (x),y)=>TRUE; g
+8 ACCEPTED 3
. :

rule +108

x:list

|- append (x,NIL)=>x}
+10 ACCEPTED

rule +11

x:list

|- list_append (drop(x))=>x;
+11 RCCEPTED

Induct length(x) <l
NEW GOALS:

1)
xs join,ys list
#1 length(x) : ZERO
#2 list_permutation(x,drop(y))
&1 Ix’:join,y’tlist
#1 length(x’) c length(x)
#2 1ist_permutationix’,droply'))
|- permutation(sortl(x’),y’)=>TRIE)
|- permutation(sorti(x),y)=TRUE

SINPLIFIES TO:

TRUE

121
xt join,ytlist
#1 length(x) 1 suc
#2)ist_permutation(x,drop(y))
81 Ix’:1join,y’tlist
#1 length(x’) ¢ length(x)
#2 1ist_permutationix’ droply’))
|- permutation(sortl(x’),y’)e>TRUE]
|- permutation(sortl(x),y)sTRUE

SINPLIFIES T0:

x.tltlist_of_cons,x.hd.cdr:!ist,x.hd.carinatnum,x: join,ytlist
#1 permutation(append(cons (x.hd.car,x.hd.cdr), | ist_sppend(x.tl)),y)
&1 [x’:join,y’1list
#1 tength(x’) c tength{join(cons(x.hd.car,x.hd.cdr),x. 1))
#2 1ist_permutation(x’ droply’))
|- permutation(sortl(x’),y’)e>TRUE]
|~ permutation(sorti(join(cons(x.hd.cor,x.hd.cdr),x.t1)),y)
1 GOALS REMAIN TO BE PROVED

CURRENT GOAL :
x.t111ist _of _cons,x.hd.cdr:iist,x.hd.cartnatnum,xt join,ys list
#1 permutation (append(cons (x.hd.cor,x.hd.cdr), | ist_sppend(x.t1)),y)
&1 (x’:join,y’1list
#1 length(x’) c length(join(cons (x.hd.cor,x.h.cér),x.t1))
72 ist_permutation(x’ drop(y’))

- BB e T g T ey

AlS Example 3: Total Correctness of Sorting by Merging Page 97

|- permutation(sortl(x’),y’)=>TRUE)
|- permutation(sortl(join(cons(x.hd.car,x.hd.cdr),x.tl)),y)

type x.tl!
NEN GOALS:

m
x.tl11ist_of_cons,x.hd.cdri|ist,x.hd.cartnatnum,xs join,ys | ist
#1 x.t1 3 NIL
#2 permutation (append (cons (x.hd.car,x.hd.cdr), | ist_eppend(x.t!)),y)
&1 [x’:join,y’1list
#1 length(x’) c length(join(cons (x.hd.car,x.hd.cdr), x.t1))
#2 |ist_permutation(x’,drop(y’))
|- permutation(sorti(x’),y’)=>TRUE]
|- permutation(sortl(join(cons (x.hd.car,x.hd.cdr),x.t1)),y)

SINPLIFIES TO:
TRUE

(2] j
x.tltlist_of_cons,x.hd.cdrslist,x.hd.cartnatnum,xs join,ys list
#1 x.tl ¢ join
#2 permutation(append(cons (x.hd.car,x.hd.cdr),|ist_append(x.ti)),y) 1
&1 [x’:join,y’:list
#1 length(x’) c length(join(cons(x.hd.car,x.hd.cdr),x.t1))
#2 list_permutation(x’,drop(y’))
|- permutation(sortl(x’),y’)=>TRUE)
|- permutation(sortl(join(cons(x.hd.car,x.hd.cdr),x.t1)),y)

SINPLIFIES YO: »

TRUE

PROOF OF +8 RELRTIVE TO THE RSSERTIONS:

+10 42 41 48 +11

UNPROVED RULES: «+11 +10 49 47 45 42 +}
UNPROVED SYNTAX LEMMAS: -13 -12 -11 -10 -8 -2

qed;

rule 412
x:list,ytlist,z:list

%1 permutation(y,2)

#2 permutationi(x,y)

|- permutation(x,z)=>TRUE;
+12 RCCEPTED

rule +13

x:list_of_cons

|- permutation(]ist_append(pair_merge(x)), |ist_append(x))=>TRUE;
+13 ACCEPTED

prove +9!

PROVING +9

x1list_of_cons,ytlist_of_cons

#1 list_permutation(x,y)

|- Vist_permutation(pair_merge(x),y)s>TRUE

CURRENT GOAL:

1

x:list_of_cons,ytlist_of _cons

#1 Vist_permutation(x,y) -
|- Vist_permutation(pair_merge(x),y)=TRUE

Al3 Example 3: Total Correctness of Sorting by Merging Page 98

SINPLIFIES TO:

TRUE
PROOF OF +9 RELATIVE TO THE RSSERTIONS:
+13 +12
UNPROVED RULES: 413 412 +11 410 47 45 42 ¢l
UNPROVED SYNTRX LEMMAS: -13 -12 -11 -10 -8 -2

qed;
prove -12;
PROVING -12

Itlist_of_cons
|- list_append(1) 1 list

induct |1
NEW GOALS:

(1)
Itlist_of_cons ;
#1101 ¢ NIL 3
&1 (1’:1ist_of _cons :
27 1’ c
|- list_append(i®) 3 1ist)
|- list_append(l) : list

SIMPLIFIES TO:
TRUE

(21
Itlist_of_cons
#2111 join
&1 (I1’:1ist_of_cons
1’ c
)- Vist_append(l®) : 1ist)
|- tist_append(1) s Iist

SINPLIFIES T0:

TRUE

PROOF OF -12

UNPROVED RULES: 413 +12 +11 +10 47 +5 42 o}
UNPROVED SYNTAX LEMMARS: -13 -11 -10 -8 -2

qed)
prove -13!
PROVING -13

I1:1ist_of_cons,1211ist_of_cons
|- list_permutation(11,12) : boolean

CURRENT GORL:
$))

tlelist _of _cons, 2:11ist _of _cons
|- list_permutation(1],12) : boolean

SINPLIFIES TO: ‘

TRUE

PROOF OF -13

UNPROVED RULES: 413 212 411 #10 47 45 42 4}
UNPROVED SYNTRX LEMWMRS: -11 -10 -8 -2

A3 Example 3: Total Correctness of Sorting by Merging : Page 99

qed;

program sort2;
declare function merge_cons(l1l:cons, |2:cons)scons
function pair_merge(lizlist_of_cons):tlist_of_cons s
list_of_cons case || of
NIL: NIL
Joins list_of_cons case ti(I1) of
NIL: 1
Join: Join(merge_cons(hd(11),hd(R1(11))),pair_merge(ti(ti(11})))

-
THE FOLLOMING FUNCTIONS ARE UNDEF INED:
merge_cons
append
permutation
lequal
THE FOLLOMING SYNTRX LEMMRS HRVE BEEN GENERATED BY THE PRRSER:

[-14) :
I1:cons, |2:cons
|- merge_cons(11,12) : cons;

rule +14

x:list,yslist,z:list_of_cons

|- append (x,append(y, | ist_append(z)))=>append (append (x,y), | ist_sppend(2));
+14 ACCEPTED

rule +15 4

x3cons,y:cons

|- permutation(merge_cons (x,y),append(x,y))=>TRUE;
+15 RCCEPTED

rule +16

x:list,yslist,utlist,vilist

#1 permutation(x,y)

#2 permutation(u,v)

|- permutation(append(x,u),append(y,v))s=>TRUE;
+16 RCCEPTED 3

rule +17 |

x:list

|- append (NIL,x)=>x}
+17 ACCEPTED

prove +13;

PROVING +13

xtlist_of_cons

|- permutation(list_asppend (pair_merge(x)), |ist_sppend (x))=>TRUE

Induct x|
NEW GOALS:

(§)]
xtlist_of_cons
#1 x 1 NIL
&1 (x’tlist_of_cons
#l %’ ¢cx
|- permutation(iist_append (pair_merge(x’)),|ist_sppend(x’))e>TRUE)
|- permutation(!ist_sppend(pair_merge(x)), | ist_sppend (x))=TRUE

Y, ST S T e Y

Al3 Example 3: Total Correctness of Sorting by Merging

SINPLIFIES TO:
TRUE

[2)
x:list_of_cons
#1 x : join
81 Ix’:1ist_of_cons
1l x’ ¢ x
|- permutation(list_append(pair_merge(x’)),!|ist_append(x’))=>TRUE)
|- permutation(iist_append(pair_merge(x)), |ist_append(x))=TRUE

SINPLIFIES TO:

x.tl:1ist_of_cons,x.hd.cdr:list,x.hd.carinatnum
81 Ix’*:list_of_cons
#1 x’ ¢ join(cons(x.hd.car,x.hd.cdr),x.t1)
|- permutation(list_append(pair_merge(x’)),!ist_append(x’))=>TRUE)
|- permutation(append(hd(list_of_cons case of x.tl { NIL: join(cons(x.hd.car,
x.hd.cdr) ,NIL) joint join(merge_const{cons (x.hd.car,x.hd.cdr),cons(
x.tl.hd.car,x.tl.hd.cdr)) ,pair_merge(x.t!.t1))}),1ist_append(ti(list_ot_cons
case of x.tl | NIL: join(cons(x.hd.car,x.hd.cdr),NIL) join: join(
merge_cons (cons (x.hd.car,x.hd.cdr) ,cons (x. t|.hd.car,x. t|.hd.cdr)) ,pair_merge
(x.t1.t1))1))), append(cons (x.hd.car,x.hd.cdr), list_append(x.t1)))
1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:
x.tls11ist_of_cons,x.hd.cdr:!list,x.hd.carinatnum
&1 [x’:1ist_of_cons
#1 x’ ¢ jJoin(cons(x.hd.car,x.hd.cdr),x.tl)
|- permutation(list_append(pair_merge(x’)),|ist_append(x’))=>TRUE]
|- permutationlappend(hd(list_of_cons cass of x.t! { NiLi jointcons(x.hd.car,
x.hd.cdr) ,NIL) Joint join(merge_cons(cons(x.hd.car,x.hd.cdr),cons(
x.tl.hd.car,x.tl.hd.cdr)),pair_merge(x.ti.t1))}),list_append(ti(list_of_cons
case of x.tl { NIL: join(cons(x.hd.car,x.hd.cdr) ,NIL) join: join(
merge_cons (cons (x.hd.car,x.hd.cdr) ,cons (x. t|.hd.car,x. t|.hd.cdr)) ,pair_merge
« (x.t1.11))1))), append (cons (x.hd.car,x.hd.cdr), | ist_append(x.t1)))

type x.t1!
NEW GOALS:

80

x.tlslist_of_cons,x.hd.cdrilist,x.hd.car:natnum

1 x.t1 s NIL

&1 [x':list_of_cons
#1 x* ¢ join(cons(x.hd.car,x.hd.cdr), x.tl)
|- permutation(list_append(pair_merge(x’)),!ist_append(x’))=>TRUE]

|- permutation(append(hd(list_of_cons case of x.tl | NIL: join(cons(x.hd.car,
x.hd.cdr) ,NIL) join: join(merge_cons (cons (x.hd.car,x.hd.cdr),cons(
x.tl.hd.car,x.tl.hd.cdr)),pair_merge(x.ti.t1))}), list_append(ti(iist_of_cons
case of x.tl { NILt join(cons(x.hd.car,x.hd.cdr),NIL) join: join(
wmerge_cons (cons (x.hd.car,x.hd.cdr) ,cons (x. t| .hd.car,x. t|.hd.cdr)) ,pair_merge
(x.t1.¢1))1))),append (cons (x.hd.car,x.hd.cdr), | ist_append(x.t1)))

SINPLIFIES TO:
TRUE

(2)
x.ti:1ist_of_cons,x.hd.cdr:list,x.hd.cartnatnum
1 x.tl @ join
&1 [x’tlist_of_cons
#1 x’ ¢ join(cons(x.hd.car,x.hd.cdr),x. 1)
|- permutation(list_append(pair_merge(x’)),!ist_append(x’))=>TRUE)

Page 100

Al3 Example 3: Total Correctness of Sorting by Merging

|- permutation(append(hd(iist_of_cons case of x.ti | NiL: join(cons(x.hd.car,
x.hd.cdr) ,NIL) join: join(merge_cons (cons (x.hd.car,x.hd.cdr),cons(
x.tl.hd.car,x.tl.hd.cdr)),pair_merge(x.ti.t1))}),list_oppend(ti(iist_of_cons
case of x.t1 1 NIL: join(cons(x.hd.car,x.hd.cdr) ,NIL) join: join(
merge_cons (cons (x.hd.car,x.hd.cdr) ,cons (x. t | .hd.car,x. t1.hd.cdr)) ,pair_merge
(x.t1.t1))1))),append(cons(x.hd.car,x.hd.cdr), | ist_append(x.tl)))

SINPLIFIES YO:

TRUE

PROOF OF +13 RELATIVE TO THE RSSERTIONS:

+16 +14 +15 47 +2

UNPROVED RULES: +16 +15 414 252 411 2418 47 45 42 o)
UNPROVED SYNTRX LEMMAS: -14 -11 -18 -6 -2

qed;

program sortd;
function merge(ll:list,12:1ist)1list &
Iist case |1 of
NIL: 12
cons: |ist case 12 of
NIL: 11
cons: wmerge_cons(i},12)
function merge_cons(ll:cons, 12:cons)icons &
If lequal(car(11),car(12)) then cons(car(i1),merge(cdr(11),12))
eise consfcar(12), ,merge(il,cdr(12)))
declare function sum_length(ilslist,12:1ist)inatnum
L]
THE FOLLOWING FUNCTIONS RRE UNDEF INED:]
sum_length
append
permutation
lequal
THE FOLLOWING SYNTAX LEMMAS HAVE BEEN GENERRTED BY THE PARSER:

[-15)
11:1ist, 121118t
|- merge(i11,12) 1 listy

(-16)
(1elist, 121 1ist
|- sum_length(11,12) ¢ natnum;

rule +18

xlicons,xZicons

#1 ordered_cons(xl)

#2 ordered_cons (x2)

|- ordered_cons (merge_cons (x1,x2))=>TRUE,
+18 ACCEPTED

prove 45;

PROVING +5

ytlist_of_cons

71 Vist_orderedly)

|- Vist_ordered(pair_merge(y))=>TRUE

induct y i
NEN GOALS:
193]

ytlist_of_cons
1l gy NIL

Page 101

——

A1l3 Example 3: Total Correctness of Sorting by Merging

#2 |ist_ordered(y)
81 [y’:list_of_cons

1y cy

#2 |ist_ordered(y’)

|- list_ordered(pair_merge(y’))=>TRUE]
|- list_ordered(pair_merge(y))sTRUE

SINPLIFIES TO:
TRUE

[2)
y:list_of_cons
#l y : join
#2 |ist_ordered(y)
81 [y’:list_of_cons
1y cy
#2 list_ordered(y’)
|- list_ordered(pair_merge(y’))=>TRUE]
|- list_ordered(pair_merge(y))=TRUE

SINPLIFIES TO:

y.tl:list_of_cons,y.hd.cdr:list,y.hd.carinatnum
#1 ordered_cons (cons (y.hd.car,y.hd.cdr))
#2)ist_ordered(y.tl)
81 (y’:list_of_cons
#1 y’ c join(cons(y.hd.car,y.hd.cdr),y.t!)
#2 \ist_ordered(y’)
|- list_ordered(pair_merge(y’))=>TRUE]
|- ordered_cons(hd(list_of_cons case of y.t! { NIL: join(cons(y.hd.car,y.hd.cdr)
,NIL) join: join(merge_cons(cons(y.hd.cor,y.hd.cdr), consly.tl . hd.cer,
y.tl.hd.cdr)),pair_merge(y.t1.t1))1)) and 1ist_ordered(ti(iist_of_cons case
of y.t! { NIL: join(cons(y.hd.car,y.hd.cdr) ,NIL) join: join(merge_cons(cons
(y.hd.car,y.hd.cdr) ,cons(y.t|.hd.car,y. t!.hd.cdr)) pair_merge(y.ti.t1)) 1))
1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:

y.tltlist_of_cons,y.hd.cdr:list,y.hd.carinatmum

#1 ordered_cons (cons (y.hd.car,y.hd.cdr))

#2 list_ordered(y.tl)

&1 (y’tlist_of_cons
#1 y’ c join(cons(y.hd.car,y.hd.cdr), y. 1)
#2 \ist_ordered(y')
|- list_ordered(pair_merge(y’))=>TRUE]

|- ordered_cons(hd(list_of_cons case of y.tl [NIL: join(cons(y.hd.car,y.hd.cdr)
,NIL) join: join(merge_cons(cons(y.hd.car,y.hd.cdr),cons(y.tl.hd.car,
y.tl.hd.cdr)) pair_merge(y.ti.t1))})) and list_ordered(ti(list_of _cons case
of y.t! { NIL: joinfcons(y.hd.car,y.hd.cdr),NIL) join: join(merge_cons(cons
(y.hd.car,y.hd.cdr) ,cons (y.t!.hd.car,y.t!1.hd.cdr)) ,pair_merge(y.ti.t1))}))

type y.ti!
NEN GOALS:

($8]
y.tirlist_of_cons,y.hd.cdrilist,y.hd.cartnatnum
1 y.t1 1 NIL
#2 ordered_cons (cons (y.hd.car,y.hd.cdr))
#3 list_ordered(y.t!}
&1 [y'tlist_of_cons
#1 y’ ¢ join(cons(y.hd.car,y.hd.cdr),y. t1)
#2 ist_ordered(y’)
|- Vist_ordered(pair_merge(y’))=>TRUE)
|- ordered_cons(hd(list_of_cons cass of y.t! | NIL: join(cons(y.hd.car,y.hd.cdr)
yNIL) Join: Join(merge_cons (cons(y.hd.car,y.hd.cdr) cons(y.tl.hd.cor,

Page 102

Al3 Example 3: Total Correctness of Sorting by Merging

y.tl.hd.cdr)),pair_merge(y.ti.t1))})) and list_ordered(ti(list_of_cons case
of y.t1 { NIL: join(cons(y.hd.car,y.hd.cdr),NIL) join: join(merge_cons (cons
(y.hd.car,y.hd.cdr) ,cons (y. t!.hd.car,y.ti. hd.cdr)),pair_mergefy.ti.t1))1))

SINPLIFIES TO:
TRUE

21
y.tltlist_of _cons,y.hd.cdr:list,y.hd.cartnatnum
#1 y.tl : join
#2 ordered_cons (cons (y.hd.car,y.hd.cdr))
#3 list_ordered(y.tl)
&1 (y’:1ist_of_cons
#1 y’ ¢ joinl(cons(y.hd.car,y.hd.cdr),y.tl)
#2 1ist_ordered(y’)
|- list_ordered(pair_merge (y’))=>TRUE]
|- ordered_cons(hd(list_of_cons case of y.tl { NIL: join(cons(y.hd.car,y.hd.cdr)
yNIL) join: join(merge_cons (cons (y.hd.car,y.hd.cdr),cons(y.t!.hd.car,
y.tl.hd.cdr)),pair_merge(y.tl.t1))}1)) and list_ordered(ti(list_of_cons case
of y.tt { NIL: join(cons(y.hd.car,y.hd.cdr),NIL) join: join(merge_cons (cons
(y.hd.car,y.hd.cdr),cons (y. t1.hd.car,y. t!.hd.cdr)),pair_merge(y.ti.ti))}))

SINPLIFIES TO:

TRUE

PROOF OF +5 RELARTIVE TO THE RSSERTIONS:

+18 +2

UNPROVED RULES: 418 416 415 +14 412 +11 +18 47 42 41
UNPROVED SYNTRX LEMMAS: -16 -15 -14 -11 -10 -6 -2

qed;

prove -6;

PROVING -6

1itlist_of_cons

|- pair_merge(il) & list_of_cons

induct 11!
NEW GORLS:

1
I1:list_of_cons
#1 11 : NIL
&1 [11’:1ist_of_cons
7 11° ¢ 1
|- pair_merge(1i1’) : list_of_cons)
|- pair_merge(il) 1 list_of_cons

SINPLIFIES T0:
TRUE

[2)
I1tlist_of_cons
#1 11 ¢ join
&1 (11’:1ist_of_cons
71 11° ¢ 11
|- pair_merge(11’) 1 (ist_of_cons)
|- pair_merge(il) & list_of_cons

SINPLIFIES TO:
TRUE

PROOF OF -6 RELATIVE TO THE ASSERTIONS:
+2

Page 103

Al3 Example 3: Total Correctness of Sorting by Merging

UNPROVED RULES: 418 +16 +15 +14 +12 411 +10 47 +2 o1
UNPROVED SYNTRX LENMAS: -16 -15 -14 -11 -18 -2

qed;

rule +19

xtlist,ytlist,ztlist

fl xcy

|- sum_length(x,z) ¢ sum_length(y,z)=>TRUE;
+18 ACCEPTED

rule +28

x:list,yslist,z:list

flycz

|- sum_length(x,y) c sum_length(x,z)=>TRUE;
+28 RCCEPTED

rule 421

xicons,y: | ist

|- sum_length(x,y) : suc;
+21 ACCEPTED

prove -14;

PROVING -14

I1icons, 12:cons

|- merge_cons(11,12) t cons

Induct sum_length(11,12)1
NEM GOALS:

m

Iltcons, 12:cons

&1 (11’:cons,12’:1cons
#1 sum_length(11’,12°) ¢ sum_length(I},12)
|- merge_cons(11’,12’) 1 cons)

|- merge_cons(11,12) ¢ cons

SIMPLIFIES TO:

11.cdr:list,|1l.cartnatnum, |i:cons, 12.cdr:|ist, 12.carinatnum, 12:cons

&1 (11’:cons, 12’ icons
#1 sum_length(11’,12°) ¢ sum_length(cons(lil.car,I1l.cdr), cons(12.cor,12.cdr))
|- merge_cons(11’,12') 1 cons)

|- merge_cons (cons(il.car,11.cdr), cons(12.car,12.cdr)) 1 cons

1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:

1l.cdr:list, |l.carinatnum, I1:cons, 12.cdr: | ist, |2.cartnatnum, 12tcons

&1 (11’:cons, 12’:cons
#1 sum_length(11’,12’) ¢ sum_length(cons(ll.car,1.cdr), cons(12.car,12.cdr))
|- merge_cons(i1’,12’) 1 cons)

|- werge_cons{cons(ii.car,i.cdr) cons(12.cor,12.cdr)) 1 cons

type lequal(il.cer,12.cor)!

NEW GOALS:

9))
Il.cdr:list,|l.carinatnum, I1:cons, 12.cdri | ist, 12.cartnatnum, |21cons

#1 lequal(il.car,12.car) @ TRUE
&1 (11’1cons, 12’ 1cons

Page 104

Al3 Example 3: Total Correctness of Sorting by Merging

#1 sum_length(11’,12’) c sum_length(cons(il.car,|1.cdr),cons(12.car, 12.cdr))
|- merge_consill’,12’) 1 cons)
|- merge_cons (cons(1i.car, |1.cdr),cons(12.cor,12.cdr)) 1 cons

SINPLIFIES TO0u

1l.cdrilist, i1, carinatnum, 12.cdrilist, 12.corinatnum

#1 lequal(ll.car,!12.car)

&1 [11’:cons, 12’ 1cons
#1 sum_length(11’,12°) c sum_length(cons(ii.car,!l.cdr),cons(12.cor, 12.cdr))
|- merge_cons(11’,12°) 1 cons)

|- merge(ll.cdr,cons(12.car,12.cdr)) & |ist

(21

1l.cdrilist, ll.carinatnum, tlicons, 12.cdrilist, (2. cortnatnum, (2tcons

#1 lequal(ll.car,12.car) 3 FALSE

&1 (11’:cons, 12’ :cons
#1 sum_length{11’,12’) c sum_length(cons(il.car,ll.cdr) cons(i12.car,(2.cdr))
|- merge_cons(11’,12') : cons)

|- merge_cons (cons(1}.car, 11.cdr),cons(i2.car,12.cdr)) 3 cons

SINPLIFIES TO:

TRUE
1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:

Il.cdr:list,|l.cartnatnum, 12.cdr: list, |2.carinatnum

#1 lequal(il.car,|2.car)

&1 [11’:cons, 12’ 1cons
#1 sum_length(11’,12’) c sum_length(cons(il.car,!1.cdr),cons(12.cer,12.cdr))
|- merge_cons(11’,12°) 1 cons)

|- merge(ll.cdr,cons(12.car,12.cdr)) & list

type I1l.cdr!
NEW GOALS:
m

Il.cdr:list,1l.carinatnum, 12.cdr:list, 12.carinatnum

#1 1l.cdr : NIL

#2 lequal(1l.car,12.cor)

&1 (11’:cons, 12’ :cons
#1 sum_length(11’,12’) c sum_length(cons(ll.car,!l.cdr), cons(l12.cor,12.cdr))
|- merga_cons(11’,12’) 1 cons)

|- merge(il.cdr,cons(12.car,12.cdr}) 1 list

SINPLIFIES TO:
TRUE

(2)

Il.cdrilist, Il . cartnatnum, 12.cdrt | ist, 12.cartnatnum

#1 1l.cdr : cons

#2 lequallil.car,12.car)

&1 [11’:1cons, 12’ 1cons
#1 sum_length(11’,12’) c sum_length(cons(il.cer, |1.cdr),cons(12.cor, 12.cdr))
|- merge_cons(11’,12’) 1 cons)

|- merge(il.cdr cons(12.car,|12.cdr)) 1 |ist

SINPLIFIES T0:

TRUE

PROOF OF -14 RELATIVE TO THE ASSERTIONS:

+19 420 421

UNPROVED RULES: 421 420 +19 418 416 415 14 412 411 410 47 42 &}

Page 105

A3 Example 3: Total Correctness of Sorting by Merging

UNPROVED SYNTRX LEMMAS: -16 -15 -11 -18 -2

qed;
prove -15;
PROVING -15

11ilist, 121 ist
|- merge(11,12) ¢ list

type 11!

NEN GOALS:

tm

elist,12:1ist

#1 11 ¢« NIL

|- merge(11,12) & list
SINPLIFIES TO:

TRUE

21

1zlist, 121118t

#1 11 : cons

|- merge(11,12) ¢ list
SINPLIFIES TO:

TRUE
PROOF OF -15

UNPROVED RULES: 421 420 419 +18 416 +15 14 412 +11 410 7 42 o}

UNPROVED SYNTAX LEWMAS: -18 -11 -19 -2
qed;

rule 422

ytlist_of_cons

|- length(pair_merge(y)) c suc(length(y))e>TRUE;
+22 RCCEPTED

prove +1;

PROVING +1

yt join

#1 suc(ZERD) c ilengthly)

|- length(pair_merge(y)) c length(y)e>TRUE

Induct y!
NEMW GOALS:

m
y: join
#1 suc(ZERD) c length(y)
&1 (y’sjoin
M1y cy
#2 suc(ZERD) c lengthly’)
|- length(pair_merge(y’)) c lengthly’)=>TRUE)
|- length(pair_merge(y)) c length(y)=TRUE

SINPLIFIES T0u

y.tltlist_of _cons,y.hd.cdr:list,y.hd.cartnatnum,yt join

#1 ZERO c lengthly. tl)

Page 106

r

AlS Example 3: Total Correctness of Sorting by Merging

81 [y’:join
#1 y’ c join(cons(y.hd.car,y.hd.cdr),y. t1)
#2 suc(ZERQ) c lengthly’)
|- length(pair_merge(y’)) c length(y’)=>TRUE)
|- length(ti(list_of_cons case of y.tl [NIL: joOn(com(u.M.ur.y.M.cdr),Ilu
joint join(merge_cons (cons (y.hd.car,y.hd.cdr),cons(y.:|.hd.car,y. t!.hd.cdr
)),pair_merge(y.ti.t1))1)) c lengthly.tl)
1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:
y.ti:list_of_cons,y.hd.cdr:list,y.hd.cartnatnum,ys join
#1 ZERO c tengthfy.ti)
&1 [y’:join
#1 y’ c join(cons(y.hd.car,y.hd.cdr),y.t1)
#2 suc(ZERO) c lengthly’)
|- length(pair_merge(y’)) c length(y’)e>TRUE]
|- length(ti(l1ist_of_cons case of y.t! { NiL: join(cons(y.hd.car,y.hd.cdr),NIL)
join: Join(merge_cons (cons (y.hd.car,y.hd.cdr),cons(y. t].hd.car,y. t|.hd.cdr
)),pair_merge(y.ti.t1))1)) c lengthly. tl)

type y.tl!
NEN GORLS:

m
y.ti:list_of_cons,y.hd.cdrilist,y.hd.cartnatnum,ys join
#1 y.t! : NIL
#2 2ERO c length(y.tl)
&1 [y’:join
#1 y’ c join(cons(y.hd.car,y.hd.cdr),y. t!)
#2 suc(ZERO) c length(y’)
|- length(pair_merge(y’)) c length(y’)=>TRUE]
|- tength{titlist_of_cons case of y.tl 1 NILt join(cons(y.hd.car,y.hd.cdr),NIL)
Join: join(merge_cons (cons (y.hd.car,y.hd.cdr) ,cons(y. ti . hd.car,y. t!.hd.cdr
)),pair_merge(y.t1.t1))1)) c lengthly.tl)

SINPLIFIES T0:
TRUE

121
y.tizlist_of_cons,y.hd.cdr:list,y.hd.cartnatnum,ys join
#1 y.tl ¢t join
#2 ZERO c length(y.tl)
&1 ly’: join
#1 y' c joinlcons(y.hd.car,y.hd.cdr),y.t1)
#2 suc(ZERO) c length(y’)
|- length(pair_merge(y’)) c length(y’)=>TRUE])
|- tength(li(list_of_cons case of y.t! { NILs join(cons(y.hd.cor,y.hd.cdr),NIL)
Join: join(merge_cons (cons(y.hd.car,y.hd.cdr) ,cons(y.ti.hd.cor,y.t!.hd.cdr
)),pair_merge(y.ti.t1))}1)) c lengthly.tl)

SINPLIFIES TO:

TRUE
PROOF OF +1 RELATIVE TO THE RSSERTIONS:
422 +2
UNPROVED RULES: 422 421 420 +19 418 416 +15 +14 412 411 410 47 +2
UNPROVED SYNTRX LENMAS: -16 -1i -i8 -2

qed;

prove +2!

PROVING +2

111 join

|- pair_merge(il) 1 join

Page 107

|
|
1
{
{
{
|

e PTG

CURRENT GOAL:

1]
3 11: join
|- pair_merge(ll) : join

SINPLIFIES TO0:

TRUE

PROOF OF +2

UNPROVED RULES: 422 421 428 +19 +18 416 415 414 412 +11 +10 +7
9 UNPROVED SYNTAX LEMWAS: -16 -11 -18 -2

qed;

rule 423

xinatnum,y:natnum

X1 not lequallx,y)

|- lequal (y,x)=>TRUE;
423 RCCEPTED

rule +24

n:natnum,xl:cons,x2:cons

#1 ordered_cong (cons(n,xl))

#2 ordered_cons (cons (n,x2))

|- lequal (n,car (merge_cons (x1,x2)))=>TRUE;
+24 RCCEPTED

prove +18;

PROVING +18

x1icons,x2icons

#1 ordered_cons(x1)

#2 ordered_cons (x2)

|- ordered_cons (merge_cons (x1,x2))=>TRUE

induct sum_lengthixi,x2)!
NEW GOALS:

$8)
x11cons,x2icons
#1 ordered_cons(xl)
#2 ordered_cons (x2)
&1 (x1’:cons,x2’icons
#1 sum_length(xl’,x2’) c sus_length(xl,x2)
#2 ordered_cons(x1’)
#3 ordered_cons (x2')
|- ordered_cons (merge_cons (x1’,x2’))=>TRUE]
|~ ordered_cons (merge_cons (x],x2))«TRUE

SINPLIFIES T0:

xl.cdrilist,xl. carinatnum,xlicons,x2.cdrilist,x2.corinatnum,x21cons
#1 ordered_cons (cons (xl.car,xl.cdr))
#2 ordered_cons (cons (x2.car,x2.cdr))
81 [x1’icons,x2’icons
#1 sum_length(xl’,x2’) c sum_length(cons (xl.cer,xl.cdr),cons (x2.cor,x2.cdr))
#2 ordered_cons(x1’)
#3 ordered_cons (x2’)
|- ordered_cons (merge_cons (x1’,x2'))=>TRUE)
|- ordered_cons (merge_cons (cons (x1.cor,xl.cdr),cons (x2.cor,x2.cdr)))
1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:

AlS Example 3: Total Correctness of Sorting by Merging

Page 108

Al3 Example 3: Total Correctness of Sorting by Merging Page 109

xl.cdr:list,xl.car:natnum,xl:cons,x2.cdri | ist,x2.carsnatnum, x2:cons
#1 ordered_cons (cons (x1.car,x1.cdr))
#2 order- ' _cons (cons (x2.car,x2.cdr))
81 [x1’:c , %2’ 1cons
1 s 3th(x1’,x2’) c sum_length(cons(xl.car,xl.cdr),cons(x2.cor,x2.cdr))
” o cons(x]’)
#3 orie. ¢ “ons(x2’)
|- orde a_cons(merge_cons (x1’,x2’))=>TRUE]
|- ordercd_cons (merge_cons (cons (x1.car,xl.cdr),cons (x2.car,x2.cdr)))

type lequal (x].car,x2.car)!
NEW GOALS:

1)
xl.cdr:list,xl.car:natnum,xl:cons,x2.cdrilist,x2.cartnatnum,x2:cons
#1 lequal (x1.car,x2.car) : TRUE
#2 ordered_cons (cons (x1.car,xl.cdr))
#3 ordered_cons (cons (x2.car,x2.cdr))
&1 [x1’:cons,x2’:cons
#1 sum_length(xl’,x2’) c sum_length(cons(xl.car,xl.cdr), cons (x2.car,x2.cdr))
#2 ordered_cons (x]’)
#3 ordered_cons (x2’)
|- ordered_cons (merge_cons (x1’,x2"))=>TRUE)
|- ordered_cons (merge_cons (cons (xl.car,xl.cdr),cons (x2.car,x2.cdr)))

SINPLIFIES TO:

xl.cdr:list,xl.car:natnum,x2.cdr:|ist,x2.cartnatnum
#1 lequal(xl.car, x2.car)
#2 ordered_cons (cons (x1.car,xl.cdr))
#3 ordered_cons (cons (x2.car,x2.cdr))
&1 [x1’:cons,x2’:cons
#1 sum_length(x1’,x2’) c sum_length(cons (xl.car,xi.cdr),cons(x2.car,x2.cdr))
#2 ordered_cons(x1’)
#3 ordered_cons(x2’)
|- ordered_cons (merge_cons (x1’,x2’))e>TRUE]
|- ordered_cons (cons (x1.car,merge (x1.cdr,cons (x2.car,x2.cdr))))

{2)
xl.cdr:list,x].car:natnum,xlicons,x2.cdrt | ist,x2.car:natnum,x2tcons
#1 lequai(xl.car,x2.car) : FALSE
#2 ordered_cons (cons (x1.car,xl.cdr))
#3 ordered_cons (cons (x2.car,x2.cdr))
&1 (x1’:cons,x2’:cons
#1 sum_length(xl’,x2’) c sum_length(cons (xl.car,xl.cdr),cons(x2.car,x2.cdr))
#2 ordered_cons(xl’)
#3 ordered_cons (x2’)
|- ordered_cons (merge_cons (x1’,x2’))=>TRUE}
|- ordered_cons (merge_cons (cons (x1.car,xi.cdr),cons (x2.car,x2.cdr)))

SINPLIFIES YO:

xl.cdr:list,x]l.cartnatnum,x2.cdr:list, x2.carinatnum
#1 not lequal(xl.car,x2.car)
#2 ordered_cons (cons (xl.car,xl.cdr))
#3 ordered_cons (cons (x2.car,x2.cdr))
81 [x1’:cons,x2’:icons
#1 sum_length(x1’,x2') c sum_length(cons(xl.car,xl.cdr), cons (x2.car,x2.cdr))
#2 ordered_cons(x1’)
#3 ordered_cons (x2’)
|- ordered_cons (merge_cons (x1’,x2’))=>TRUE)
|- If lequal(x2.car,cor(list case of x2.cdr | NIL: cons(xl.cor,xi.cdr) cons:
wmerge_cons (cons (x1.car,xl.cdr),cons (x2.cdr.car,x2.cdr.cdr))})) then
ordered_cons (cdr (merge_cons (cons (x1.cer,xl.cdr) ,cons (x2.car,x2.cdr)))) elise
FALSE

AlS Example 3: Total Correctness of Sorting by Merging

2 GORLS REMAIN TO BE PROVED

CURRENT GOAL:
xl.cdr:list,xl.car:natnum,x2.cdr: | ist,x2.cartnatnum
#1 lequal (xl.car,x2.car)
#2 ordered_cons (cons (x}.car,xi.cdr))
#3 ordered_cons (cons (x2.car,x2.cdr))
&1 [x1’:cons,x2’:cons
#1 sum_length(xl’ ,x2’) c sum_length(cons(xl.car, xl.cdr),cons(x2.car,x2.cdr))
#2 ordered_cons(x1’)
#3 ordered_cons(x2’')
|- ordered_cons (merge_cons (x1’,x2°’))=>TRUE)
|- ordered_cons (cons (x1.car,merge (x1.cdr,cons (x2.car,x2.cdr))))

type xi.cdr!
NEUW GOALS:

(1
xl.cdr:list,xl.car:natnum,x2.cdr: | ist,x2.cartnatnum
#1 xl.cdr 3 NIL
#2 lequal (xl.car,x2.cer)
#3 ordered_cons (cons (x1.car,x].cdr))
#4 ordered_cons (cons (x2.cer,x2.cdr))
&1 [x1’:cons,x2’:cons
#1 sum_length(x1’,x2’) c sum_length(cons(xl.car,xl.cdr),cons (x2.cor,x2.cdr))
#2 ordered_cons(x1’)
#3 ordered_cons (x2’)
|- ordered_cons (merge_cons (x1’,x2"))=>TRUE)
|- prdered_cons (cons (x1.car,merge (xl.cdr,cons (x2.car,x2.cdr))))

SINPLIFIES TO:
TRUE

[2)
xl.cdr:list, xl.carinatnum,x2.cdr:list,x2.carinatnum
#1 xl.cdr : cons
#2 lequal (x1.car,x2.car)
#3 ordered_cons (cons (x1.car,xl.cdr))
#4 ordered_cons (cons (x2.car,x2.cdr))
&1 ([x1’:icons,x2’i1cons
#1 sum_length(x1’,x2’) c sum_length(cons (xl.cer, xl.cdr),cons (x2.cor,x2.cdr))
#2 ordered_cons (x1’)
#3 ordered_cons (x2’)
|- ordered_cons (merge_cons (x1’,x2’))«>TRUE]
|- ordered_cons (cons (x1.car,merge (xl.cdr,cons (x2.cor,x2.cdr))))

SINPLIFIES TO:

TRUE
1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:

xl.cdrilist,xl.carinatnum,x2.cdri|ist,x2.cartnatnun

#1 not lequal(xl.car,x2.cor)

#2 ordered_cons (cons (x].car,xi.cdr))

#3 ordered_cons (cons (x2.car,x2.cdr))

&1 [x1’:cons, x2’:cons
#1 sum_length(xl’,x2’) ¢ sum_length(cons (x).car,xl.cdr),cons (x2.car,x2.cdr))
#2 ordered_cons(x]’)
#3 ordered_cons (x2’)
|- ordered_cons (merge_cons (x1’,x2’))=>TRUE)

|= 1f lequal(x2.car,car(list case of x2.cdr { NIL: cons(xl.car,xl.cdr) const
merge_cons (cons (x1.car,xl.cdr), cons (x2.cdr.cor,x2.cdr.cdr))})) then
ordered_cons (cdr (merge_cons (cons (x1.car,xl.cdr) ,cons (x2.car,x2.cdr)))) else

Page 110

G

AlS3 Example 3: Total Correctness of Sorting by Merging

FALSE

type x2.cdr!
NEW GOALS:

1)

xl.cdr:list,xl.carinatnum,x2.cdrilist,x2.carinatnum

#1 x2.cdr 1 NIL

#2 not lequal (xl.car,x2.cer)

#3 ordered_cons (cons (xl.cer,xl.cdr))

#4 ordered_cons (cons (x2.cer,x2.cdr))

&1 [x1’:icons,x2’icons
#1 sum_length(xl’,x2’) c sum_length(cons(xl.car,xl.cdr),cons (x2.cor,x2.cdr))
#2 ordered_cons(xl’)
#3 ordered_cons (x2’)
|- ordered_cons (merge_cons (x1’,x2’))=>TRUE]

|- If lequal(x2.car,car(list case of x2.cdr | NIL: cons(xl.cer,xl.cdr) const
wmerge_cons (cons (x1.car,xl.cdr),cons (x2.cdr.car,x2.cdr.cdr))})) then
ordered_cons (cdr (merge_cons (cons (x1.car,x1.cdr) ,cons (x2.cor,%x2.cdr)))) olise
FALSE

SINPLIFIES TO:
TRUE

[2)

xl.cdrilisi,xl.cartnatnum,x2.cdrt | ist,x2.cartnatnum

#1 x2.cdr : cons

#2 not lequal(xl.car,x2.car)

#3 ordered_cons (cons (x1.car,xl.cdr))

#4 ordered_cons (cons (x2.car,x2.cdr))

&1 ([x1’:cons,x2’:cons
#1 sum_length(xl’,x2’) c sum_length(cons(xl.car,xl.cdr), cons(x2.car, x2.cdr))
#2 ordered_cons(xl’)
#3 ordered_cons (x2’)
|- ordered_cons (merge_cons (x1’,x2’))=>TRUE]

|- 1f lequal(x2.car,car(list case of x2.cdr { NIL: cons(xl.car,xl.cdr) cons:
merge_cons (cons (x1.car,xl.cdr),cons (x2.cdr.car,x2.cdr.cdr))1)) then
ordered_cons (cdr (merge_cons (cons (x1.car,x1.cdr) ,cons (x2.car,x2.cdr)))) elise
FALSE

SINPLIFIES T0:

TRUE

PROOF OF +18 RELATIVE TO THE ASSERTIONS:

423 420 +24 +19 421

UNPROVED RULES: 424 423 422 421 420 +19 416 15 414 +12 +11 +10 7
UNPROVED SYNTRX LEMMAS: -16 -11 -18 -2

qed;

prove +22;

PROVING 422

ytlist_of_cons

|- length(pair_merge(y)) c suc(length(y))=>TRUE

Induct y!

NEW GOALS:

($)]
ytlist_of_cons

#1 y t NIL
&1 ly’tlist_of_cons

Page 111

ASTON—

Al3 Example 3: Total Correctness of Sorting by Merging Page 112

A

My cy
|- length(pair_merge(y’)) c suc(lengthly’))s=>TRUE]
|- lengthipair_merge(y)) c suc(length(y))=TRUE

SINPLIFIES TOs
TRUE

[2)
yrlist_of_cons
#1 y: join]
&1 ly’:list_of_cons p
1y cy :
|- length(pair_merge(y’)) c suc(length(y’))=>TRUE)
|- length(pair_merge(y)) c suc(length(y))=TRUE]

SINPLIFIES TO:

y.tizlist_of_cons,y.hd.cdr:list,y.hd.carinatnum

&1 [y’:list_of_cons
#1 g’ c join(cons(y.hd.car,y.hd.cdr),y. t1)
|- length(pair_merge(y’)) c suc(length(y’))e>TRUE]

|- length(tl(1ist_of_cons case of y.t! { NIL: join(cons(y.hd.cor,y.hd.cdr),NIL)

joint join(merge_cons (cons(y.hd.car,y.hd.cdr),cons(y. ti.hd.cor,y. t1.hd.cdr

)),pair_merge(y.ti.t1))]1)) c sucliengthly.tl))

1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:

y.titlist_of _cons,y.hd.cdr:list,y.hd.cartnatrum

81 [y’tlist_of_cons
#1 y’ c join(cons(y.hd.cer,y.hd.cdr),y.t1)
|- length(pair_merge(y’)) c suc(iength(y’))=>TRUE)

{- length{ti(list ot _cons case of y.t! [NIL: join(cons(y.hd.car,y.hd.cdr) ,NIL)

joint join(merge_cons (cons (y.hd.car,y.h.cér),cons(y. ti.h.cor,y. t|.hd.cdr

1) ,pair_merge(y.t1.t1))1)) c sucliengthly.tl))

type y.tI!
NEN GOALS: .

m
y.ti1list_of_cons,y.hd.cdrilist,y.hd.corinatrum
#1 y.t1 2 NIL
61 ly’:list_of_cons
#1 y’ c join(cons(y.hd.cor,y.hd.cdr),y. t1)
|- length(pair_merge(y’)) c suc(length(y’))=>TRUE)
|- length(ti(iist_of_cons case of y.t! { NIL: join(cons(y.hd.car,y.hd.cdr),NIL)
Joint join(merge_cens (cons (y.hd.car,y.hd.cdr) ,cons (y. t1.hM.cor,y. t|.hd.cdr
)),pair_merge(y.ti.t1))1)) c suc(longthly.tl))

SINPLIFIES TO:
TRUE

2
y.titlist_of_cons,y.hd.cdrilist,y.hd.corinatnum
#1 y.t1 1 join
81 [y’t1ist_of_cons
f1 g’ c join(cons(y.hd.cor,y.hd.cdr),y. t1)
|- length(pair_merge(y’)) c suc(lengthiy’))=>TRUE)
|- length(ti(list_of _cons case of y.t! | NIL: join(cons(y.hd.car,y.hd.cdr),NIL)
Joint join(merge_cens (cons (y.hd.cor,y.hd.cdr) cons(y. t].hd.cor,y. t1.hd.cdr
)),pair_merge(y.t1.11))1)) c suc(lengthly.tl))

SINPLIFIES TO:

Al Example 3: Total Correctness of Sorting by Merging

TRUE

PROOF OF +22

UNPROVED RULES: 424 423 421 420 419 418 +15 +14 +12 411 410 +7
UNPROVED SYNTAX LEMMAS: -16 -11 -10 -2

qed;

prove +24;

PROVING +24

ninatnum,xl:cons,x2:cons

#1 ordered_cons (cons(n,x1))

#2 ordered_cons (cons (n,x2))

|- lequal (n,car (merge_cons (x1,x2)))=>TRUE

type lequal (car(x1), ,car(x2))!
NEW GOALS:

(98]

ninatnum,xl:cons,x2:cons

#1 tequal(car(x1),car(x2)) 1 TRUE

#2 ordered_cons (cons(n,x1))

#3 ordered_cons (cons (n,x2))

|- lequal (n,car (merge_cors(xl,x2)))sTRUE

SINPLIFIES TO:
TRUE

2]

n:natnum,xlicons,x2:cons

#1 lequal (car (x1),car(x2)) ¢« FARLSE

#2 ordered_cons (cons(n,x1))

#3 ordered_cons (cons (n,x2))

|- lequal (n,car (merge_cons (x1,x2)))=TRUE

SINPLIFIES TO:

TRUE

PROOF OF +24

UNPROVED RULES: 423 421 420 419 416 +15 414 412 411 +10 +7
UNPROVED SYNTAX LENMAS: -16 -11 -18 -2

qed;

program perm2;
function append(iltlist, 12:1ist): list &
list case 11 of
NIL: 12
cons: cons(car(11),append(cdr(i1),12))

-

THE FOLLOWMING FUNC (ONS ARE UNDEF INED:
sum_length
permutation
lequal

rule +25

ninatnum,x: list, y:list

#1 permutation(x,y)

|- permutationicons(n,x),cons(n,y))=>TRUE:
+25 ACCEPTED

rule +26

minatnum,ninatnum, 1 list, xslist,y:list

|- permutation(cons(m, 1), ,cons(n,appendix,cons(m,y))))uspermtation(i,cons tn
sappend(x,y)));

Page 113

A 13 Example 3: Total Correctness of Sorting by Merging Page 114

+26 RCCEPTED

prove +15!

PROVING +15

xicons,y:cons

|- permutation(merge_cons(x,y),append(x,y))la>TRUE

CURRENT GOAL:

(1
x1cons,ytcons
|- permutation(merge_cons (x,y),append(x,y))=TRUE

SINPLIFIES TO:

x.cdr:list,x.car:natnum,x:cons,y.cdr:list,y.car:natnum,ytcons

|- permutation{merge_cons (cons (x.car,x.cdr),cons(y.car,y.cdr)), cons (x.car,append
(x.cdr,cons (y.car,y.cdr))))

1 GOALS REMAIN TO BE PROVED

CURRENT GORL:

x.cdr:list,x.car:natnum,xicons,y.cdr:list,y.cartnatnum,ytcons

|- permutation(merge_cons (cons (x.car, x.cdr), cons(y.car,y.cdr)),cons (x.cor,append
(x.cdr,cons (y.cer,y.cdr))))

Induct sum_length(cons (x.car,x.cdr),cons(y.cor,y.cdr))|
NEW GOALS:

(1
x.cdr:list,x.carinatnum,x:cons,y.cdr:list,y.carinatnum,yscons
&1 [x.cdr’tlist,x.car’:natnum,x’tcons,y.cdr’tlist,y.car’ inatnum,y’icons
#1 sum_length(cons (x.car’, x.cdr’),cons(y.car’,y.cdr’)) c sum_length(cons (
x.car,x.cdr),cons (y.car,y.cdr))
|- permutation(merge_cons (cons{x.car',x.cdr’),consly.car’,y.cdr’)), cons!
x.car’, append(x.cdr’ cons(y.car’,y.cdr’))))=>TRUE)
|- permutation(merge_cons (cons (x.car,x.cdr), cons (y.car,y.cdr)), cons (x.cor, append
(x.cdr,cons (y.car,y.cdr))))

SINPLIFIES TO:

x.cdrtlist, x.carinatnum,y.cdr:tist,y.carinatnum
&1 [x.cdr’:list,x.car’inatnum,x’1cons,y.cdr’1list,y.car’inatnum,y’ 1cons
#1 sum_length(cons (x.car’,x.cdr’),cons(y.car’,y.cdr’)) c sum_length(cons(
x.car,x.cdr),cons (y.car,y.cdr))
|- permutation(merge_cons (cons (x.car’,x.cdr’),cons ly.car’,y.cdr’)),cons(
x.car’, append (x.cdr’ cons (y.car’,y.cdr’))))a>TRUE]
|- permutation(merge_cons (cons (x.car,x.cdr) cons (y.car,y.cdr)) ,cons (x.car,append
(x.cdr,cons (y.car,y.cdr))))
1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:
x.cdrslist,x.carsnatnum,y.cdr:|ist,y.carinatnum
&1 (x.cdr’i1list, x.car’inatnum,x’icons,y.cdr’:list,y.car’ 1natnum,y’ icons
#1 sum_length(cons (x.car’,x.cdr’),cons(y.car’,y.cdr’)) ¢ sum_length(cons(
x.car,x.cdr),,cons (y.car,y.cdr))
|- permutation(merge_cons lcons(x.car’,x.cdr’),cons(y.car’,y.cdr’)),cons(
x.car’,append (x.cdr’ cons (y.car’,y.cdr’))))a>TRUE)
|- permutation (merge_cons (cons (x.car, x.cdr),cons (y.car, y.cdr)),cons (x.car,sppend
(x.cdr,cons (y.cor,y.cdr))))

type lequal (x.car,y.car)!
NEM GOALS:

T e e) e ‘

A L3 Example 3: Total Correctness of Sorting by Merging Page 115

(1 !
x.cdr:)ist, x.car:natnum,y.cdr:list,y.carinatnum !
#1 lequal (x.car,y.car) : TRUE
&1 Ix.cdr’tlist,x.car’inatnum,x’:cons,y.cdr’:list,y.car’inatnum,y’icons
#1 sum_length(cons (x.car’,x.cdr’),cons(y.car’,y.cdr’)) c sum_length(cons(
x.car,x.cdr),cons (y.car,y.cdr))
|- permutation(merge_cons (cons (x.car’,x.cdr’), cons(y.car’,y.cdr’)),cons
x.car’, append (x.cdr’,cons (y.car’,y.cdr’))))=>TRUE]
|- permutation(merga_cons (cons (x.car,x.cdr),cons {y.car,y.cdr)),cons (x.car, append
(x.cdr,cons (y.car,y.cdr))))

SIMPLIFIES TO:

x.cdrelist,x.car:natnum,y.cdr: list,y.cartnatnum
#1 lequal (x.car,y.car)
&1 [x.cdr’:list,x.car’:natnum,x’:cons,y.cdr’slist,y.car’inatnum,y’scons
#1 sum_length(cons (x.car’,x.cdr’),cons (y.car’,y.cdr’)) c sum_length(cons(
x.car,x.cdr),cons (y.car,y.cdr))
|- permutation(merge_cons (cons (x.car’,x.cdr’),cons(y.car’,y.cdr’)),cons(
x.car’ append (x.cdr’,cons (y.car’,y.cdr’))))=>TRUE]
{- permutation(cons(x.car,merge(x.cdr, consly.car,y.cdr))), cons(x.car,append(
x.cdr,cons (y.car,y.cdr))))

21
x.cdr:list,x.cartnatnum,y.cdr:iist,y.cartnatnum
#1 lequal (x.car,y.car) : FALSE
&1 [x.cdr’:list,x.car’inatnum,x’1cons,y.cdr’slist,y.car’ inatnum,y’ tcons
#1 sum_length(cons(x.car’,x.cdr’), cons(y.car’,y.cdr’)) c sum_length(cons (
x.car,x.cdr),cons (y.car,y.cdr))
|- permutation(merge_cons (cons (x.car’,x.cdr’) cons(y.car’,y.cdr’7),cons(
x.car’, append (x.cdr’,cons (y.car’,y.cdr’))))=>TRUE]
|- permutation(merge_cons (cons (x.car,x.cdr), cons (y.car,y.cdr)),cons(x.car,append
(x.cdr,cons (y.car,y.cdr))))

SINPLIFIES T0:

x.cdr:list, x.cartnatnum,y.cdr:list, y.cartnatnum
#1 not lequal (x.car,y.car)
&1 [x.cdr’:list,x.car’inatnum,x’1cons,y.cdr’slist,y.car’tnatnum,y’scons
#1 sum_length (cons (x.car’,x.cdr’) cons(y.car’,y.cdr’)) c sum_length(cons(
x.car,x.cdr), cons (y.car,y.cdr))
|- permutation(merge_cons (cons(x.car’,x.cdr’), cons(y.car’,y.cdr’)), cons(
x.car’ append(x.cdr’,cons (y.car’,y.cdr’))))=>TRUE]
|- permutation(list case of y.cdr | NIL: cons(x.car,x.cdr) cons: merge_cons(
cons (x.car,x.cdr) ,cons (y.cdr.car,y.cdr.cdr)) | ,cons (x.car,append (x.cdr,y.cdr)
))
2 GOALS REMAIN TO BE PROVED

CURRENT GOAL:
x.cdrilist,x.corinatnum,y.cdr:list,y.carinatnum
#1 lequal (x.car,y.car)
&1 [x.cdr’ilist,x.car’inatnum,x’1cons,y.cdr’tlist,y.car’ tnatnum,y’ tcons
#1 sum_length(cons (x.car’,x.cdr’),cons(y.car’,y.cdr’)) c sum_length(cons(
x.car,x.cdr), cons (y.car,y.cdr))
|- permutation(merge_cons (cons (x.car’,x.cdr’),cons(y.car’,y.cdr’)),cons(
x.car’ append (x.cdr’,cons(y.car’,y.cdr’))))=>TRUE)
|- permutation(cons (x.car merge (x.cdr,cons(y.car,y.cdr))),cons(x.car,append (
x.cdr,cons ly.car,y.cdr))))

type x.cdr!
NEMW GOALS:
m

x.cdrilist x.cartnatnum,y.cdrilist, y.cartnatnum

Al3 Example 3: Total Correctness of Sorting by Merging

#1 x.cdr 1 NIL
#2 lequal (x.car,y.car)
&1 (x.cdr’:list,x.car':natnum,x’icons,y.cdr’tlist,y.car’inatnum,y’ :cons
#1 sum_length(cons (x.car’,x.cdr’),cons(y.car’,y.cdr’)) c sum_length(cons(
x.car,x.cdr),cons (y.car,y.cdr))
|- permutation(merge_cons (cons (x.car’,x.cdr’), cons(y.car’,y.cdr’)),cons (
x.car’ append(x.cdr’, cons(y.car’,y.cdr’))))=>TRUE]
|- permutation(cons (x.car, merge (x.cdr, cons(y.car,y.cdr))),cons (x.car,append(
x.cdr,cons (y.car,y.cdr))))

SINPLIFIES TO:
TRUE

(2]
x.cdr:list,x.car:natnum,y.cdr:list,y.cartnatnum
#1 x.cdr : cons
#2 lequal (x.car,y.car)
&1 (x.cdr’:list,x.car’:natnum,x’:cons,y.cdr’tlist,y.car’inatnum,y’tcons
#1 sum_length(cons(x.car’,x.cdr’),cons(y.car’,y.cdr’)) c sum_length(cons(
x.car,x.cdr) ,cons (y.car,y.cdr))
|- permutation(merge_cons (cons(x.car’, x.cdr’), cons(y.car’,y.cdr’)),cons(
x.car’, append (x.cdr’,cons (y.car’,y.cdr’))))=>TRUE]
|- permutation (cons (x.car,merge(x.cdr, cons(y.car,y.cdr))),cons (x.car, append (
x.cdr,cons (y.car,y.cdr))))

SIMPLIFIES TO:

TRUE
1 GOALS REMRIN TO BE PROVED

CURRENT GOAL:
x.cdr:list,x.carinatnum,y.cdr:list,y.car:natnum
#1 not lequal (x.car,y.car)
81 [x.cdr’:list,x.car’inatnum,x’tcons,y.cdr’tlist,y.car’tnatnum,y’1cons
#1 sum_length(cons (x.car’,x.cdr’),cons(y.car’,y.cdr’')) c sum_length(cons(
x.car,x.cdr), cons (y.car,y.cdr))
|- permutation(merge_cons (cons (x.car’,x.cdr’),cons(y.car’,y.cdr’)),cons(
x.car’ append (x.cdr’ ,cons (y.car’,y.cdr’)))) =>TRUE]
|- permutation(list case of y.cdr | NIL: cons(x.car,x.cdr) cons: merge_cons(
cons (x.car,x.cdr) ,cons (y.cdr.car,y.cdr.cdr))], cons (x.car, append (x. cdr,y.cdr)
)

type y.cdri
NEM GOALS:
(n

x.cdrilist,x.cartnatnum,y.cdr:list,y.cartnatnum
#1 y.cdr 1 NIL
#2 not lequal(x.car,y.car)
&1 [x.cdr’:iist,x.car’inatnum,x’1cons,y.cdr’:!ist,y.car’inatnum,y’1cons
#1 sum_length(cons(x.car’,x.cdr’),cons(y.car’,y.cdr’)) c sum_length(cons(
x.car,x.cdr) cons(y.car,y.cdr))
|- permutation(merge_cons (cons (x.car’,x.cdr’), cons(y.car’,y.cdr’)),cons(
x.car’, append (x.cdr’ cons (y.car’,y.cdr’))))=>TRUE]
|- permutation(list case of y.cdr | NIL: cons(x.cer,x.cdr) cons: merge_cons(
cons (x.car, x.cdr), cons (y.cdr.car,y.cdr.cdr))}, cons (x.car, append (x. cdr, y. cdr)
3)

SIMPLIFIES T0:
TRUE

21
x.cdrtlist,x.cartnatnum,y.cdrt|ist, y.cartnatnum

Page 116

AlS3 Example 3: Total Correctness of Sorting by Merging

#1 y.cdr : cons
#2 not lequal (x.car,y.car)
&1 (x.cdr':llst,u.cnr’;nu\nu-,x'lcont,g.cdr‘tllct,g.cnr’|na!nul,y'xconn
f }! sum_length (cons (x.car’,x.cdr’),cons (y.car’,y.cdr’)) ¢ sum_length (cons (
x.car,x.cdr),cons (y.car,y.cdr))
|- permutation(merge_cons (cons (x.car’®,x.cdr’),cons (y.car’,y.cdr’)), cons(
x.car’,append(x.cdr’,cons (y.car’,y.cdr’))))=>TRUE]
|- permutation(list case of y.cdr | NIL: cons(x.car,x.cdr) cons: merge_cons (
con:(x.car.x.cdr),eontlg.cdr.ear,y.cdr.edr))l,cons(x.ear,lppond(x.cdr,g.cdr)
))

SINPLIFIES TO:

TRUE

PROOF OF +15 RELRTIVE TO THE ASSERTIONS:

418 420 +17 +7 425 +19 +26 +21

UNPROVED RULES: 426 425 423 421 428 +19 +17 416 +14 412 411 +18 47
UNPROVED SYNTAX LEMMAS: -16 -11 -10 -2

qed;

prove +18;

PROVING +18

x:ligt

|- append (x,NIL)=>x

induct x!
NENW GOALS:

1
xtlist
#1 x 1 NIL
81 [x’:list
fl x* e x
|- append(x’,NIL)=x’ s> TRUE)
|- append (x,NIL)=x

SIMPLIFIES T0:
TRUE

(21
x:list
#1 x : cons
&1 Ix’:list
1 x’ ¢ x
|- append(x’ ,NIL)ax’ s> TRUE]
|- append(x,NIL)ex

SINPLIFIES TO:

TRUE
PROOF OF +18 RELATIVE TO THE RSSERTIONS:
417
UNPROVED RULES: 426 425 423 421 428 418 417 416 +14 412 411 47
UNPROVED SYNTRX LEMMAS: -16 -11 -10 -2

qed;
prove +14;
PROVING +14

xtlist,ytlist,ztlist_of_cons
|- append (x,append(y, | ist_append(z)))=>append (append (x,y), | Ist_sppend (z))

Induct x|

Page 117

A3 Example 3: Total Correctness of Sorting by Merging

NEN GOALS:

m
x:list,ytlist,z:list_of_cons
#1 x 3 NIL
&1 [x’:livt,y’tlist,2z’tlist_of_cons
1l x' ¢ x
|- nppond(x’,appond(g’,llnl_pppond(z‘)))-appond(nppond(x',g’),lls!_pppon‘(:')
) => TRUE) ;
|- nppond(x,nppcnd(u,Ill!_pppond(x)))-lppcnd(nppond(x,y),lll!_pppond(l))

SINPLIFIES TO:
TRUE

(21
xtlist,yslist, 2zt 1ist_of_cons
#1 x : cons
&1 [x’slist y’slist,z’t1ist_of_cons
#l x’ ¢ x
|- append (x’, append (y’, | ist_append(z’)))=append (append (x’,y’), | ist_append(z’)
) => TRUE)
|- lppond(x,appond(g,lll!_‘ppond(z)))-lppond(lppond(x,g),lll'_nppond(:))

SINPLIFIES TO:

TRUE
PROOF OF +14 RELRTIVE TO THE RSSERTIONS:
+17
UNPROVED RULES: 426 425 423 421 428 419 417 416 +12 +11 47
UNPROVED SYNTRX LEMMAS: -16 -11 -18 -2

qed;

prove +11;

PROVING +11

x:list

|- list_append(drop (x))e>x

induct x!
NEW GOALS:

(1)
xtlist
#1 x 1 NIL
&1 [x’:list
fl x* cx
|- list_append(drop(x’))ex’ => TRUE)
|- Vist_append (drop (x))ex

SINPLIFIES TO:
TRUE

[2)
xtlist
#1 x 1 cons
81 Ix’tlist
#l x’ ¢ x
|- 1ist_sppend(drop(x’))ex’ > TRUE)
|-~ list_append (drop (x))ex

SINPLIFIES T0:

Page 118

Al3 Example 3: Total Correctness of Sorting by Merging
TRUE
PROOF OF +11 RELATIVE TO THE RSSERTIONS:

+17

UNPROVED RULES: 426 425 423 421 420 419 417 +16 +12 7
UNPROVED SYNTAX LEMMRS: -16 -11 -18 -2

qed;

prove +17!

PROVING +17

x:list

|- append (NIL,x)=>x

CURRENT GORL:

(1
x:list
|- append (NIL,x)=x

SINPLIFIES TO:

TRUE

PROOF OF +17

UNPROVED RULES: 426 425 423 +21 420 +19 416 +12 47
UNPROVED SYNTARX LEMMAS: -16 -11 -10 -2

qed;
prove -11;
PROVING -11

11rlist, 12:1ist
|- append(11,12) ¢ list

induct 11!
NEW GOALS:

9%}
11t1ist,12: 1ist
#1 11 : NIL
&1 [11°:11s1,12° 1118t
7111’ c 1l
|- append(11’,12°) 1 list)
|- append(11,12) 1t |ist

SINPLIFIES T0:
TRUE

[2)
11:0ist,12: 1ist
#1 11 : cons
&1 (11%:1ist, 12118t
711’ c 11
|- append(11’,12°) 1 1ist)
|- append(11,12) 1 list

SINPLIFIES T0:
TRUE
PROOF OF -11
UNPROVED RULES: 426 425 423 421 420 419 416 412 +7
UNPROVED SYNTRX LENMAS: -16 -18 -2

qed;

Page 119

A l4 Example 4: McCarthy-Painter Compiler for Expressions

A 1.4 Example 4: McCarthy-Painter Compiler for Expressions

program mcp;

type locname ® atom U natnum

type location = location(loc: locname, locval: integer)

type state & NIL U locations(first_loc: location, other_locs: state)
type load s load(loc_adr: locname)

type sto = sto(sto_adr: natnum)

type ti = tilarg: Integer)

type add s add(add_adr: locname)

type instr = load U sto U || U add

type code ® NIL U instrs(first_instr: instr, other_instrs: code)

type expr ® integer U atom U sumfexpri: expr, expr2: axpr)

function appand(xicode, yi:code): code &
code case x of
NIL: y
instrs: instrs(first_instr(x),append(other_instrs(x),y))

declare function plus(x:integer, y:integer): integer

function contents(l:locname,s:state): integer s
state case s of
NIL: ZERO
locations: if | equals loc(tirst_loc(s)) then locval(first_loc(s))
else contents (| ,other_locs(s))

function update(in: locname, lv:integer, s:state): state s
state case s of
NiL: focations(iocation(in, iv), NIL)
locations: if loc(first_loc(s)) equals In then
locations (location(in, Iv), other_locs(s))
eise locations(first_loc(s) update(in,iv,other_locsis)))
function step(i:instr, s:state): state s
Iinstr case | of
load: update (ZERD,contents(loc_adrii),s), s)
sto: update(sto_sdr (i),contents (ZERD,s),s)
Ii: update (ZERO,srg(i),s)
add: update (ZERO,plus (contents (add_adr (1) ,8),contents (ZERD,s)) ,s)

function outcome(cicode, s:state): state »
code case ¢ of
NIL: s
instrs: outcome (other_instrs(c),step(first_instr(c),s))

function compile(tcountisuc, eiexpr): code s
expr case o of
integer: instrsiii(e),NIL)
atom: Instrs(load(e) NIL)
sum: append (append (comp | le (tcount exprl(e)),
instrs(sto(tcount),compiie(sucitcount) ,expr2le)))),
Instrs (add(tcount) ,NIL))

function value(etexpr, ststate)t integer
expr case @ of
integer: e
atom: contents(e,s)
sum: plus(value(exprl(e),s),value(expr2(e),s))

-
THE FOLLOWING FUNCTIONS RRE UNDEF INED:
plus
THE FOLLOWING SYNTAX LEMMAS MAVE BEEN GENERATED BY THE PARSER:

Page 120

vaan

L“‘d

A l4 Example 4: McCarthy-Painter Compiler for Expressions

-1
x:code,y:code
|- append(x,y) : code;

1-2)
xt integer,yi integer
|- plusix,y) 3 integer;

-3
1: lochame,s:state
|- contents(l,s) : integer;

(-4)
In: locname, Iv: integer,s:state
|- update(in,iv,s) 1 state;

[-5)
ltinstr s:state
|- step(i,s) : state;

[-6)
cicode,s:state
|- outcome(c,s) : state;

-71
tcountisuc,etexpr
|- compile(tcount,e) : code;

-8
e:expr,s:state
|- valuele,s) : Integer;

theorem ol
n:suc,e:expr,s:state
|- contents (ZERO,outcome (compile(n,e),s))evalue(e,s);

THEOREN 1 ACCEPTED

rule +1
L1 locname,nt Integer,ststate
|- contents (), update(l, n,s))=>n;

+1 ACCEPTED

rule 42
clicode,c2:code,sistate
|- outcome (append (ci,c2),8)=>outcome (c2,outcome (cl,s));

+2 ACCEPTED
rule +3
nisuc,etexpr,sistate
|- contents(n,outcome (comp|le (suc(n),e),s))s>contents(n,s);
+3 ACCEPTED
rule +4
etexpr,ci:code,stistate

|- value(e,outcome(c,s))s>valuele,s);

+4 ACCEPTED

Page 121

A l4 Example 4: McCarthy-Painter Compiler for Expressions

rule 5
e:expr,ninatnum,v: integer,s:state
|- value(e,update(n,v,s))=>valuele,s);

+5 RCCEPTED

prove el;

PROVING ol
nisuc,erexpr,s:state
|- contents (ZERD, outcome (compile(n,e),s))svalue(e,s)

Iinduct e «!

NEW GOALS:

1l
nisuc,etexpr,s:state
#1 e 1 integer
81 (n’:suc,e’texpr,s’istate
fl e’ co
|~ contents (ZERO,outcome (compile(n’,e’),s’))=>value(e’,s’))
|~ contents (ZERO,outcome (comp!is(n,e),s))avalue(e,s)

SINPLIFIES TO:
TRUE

(21
nisuc,e:expr,sistate
#1 o & atom
81 [n’isuc,e’texpr,s’istate
#l e’ co
|- contents (ZERD,outcome (compile(n’,e’),s’))=>value(e’,s’))
|- contents (ZERO,outcome (compiie(n,e),s))avaive(e,s)

SINPLIFIES TO:
TRUE

3]
n:suc,e:expr,s:state
#1 ¢ t sum
&1 [n’:suc,e’:expr,s’istate
#l e’ ce
|~ contents (ZERD,outcome (compile(n’,e’),s’))=>valuele’,s’)]
|- contents (ZERD,outcome (compile(n,e),s))svalue(e,s)

SIMPLIFIES TO:

TRUE

PROOF OF o1 RELATIVE TO THE ASSERTIONS:

41 42 43 45 +4

UNPROVED RULES: 45 +4 43 42 ol

UNPROVED SYNTRX LEMMAS: -8 -7 -6 -5 -4 -3 -2 -1

qed;

rule 46

nlisuec,n2:suc,e1expr,sistate

#1l nl cn2

|- contents(nl,outcome(compile(n2,e),s))a>contents(nl,s);

Page 122

A l4 Example 4: McCarthy-Painter Compiler for Expressions

+6 RCCEPTED

rule +7

113 locname, 121 locname,n: integer,s:state

71 11212

|- contents(11,update(12,n,8))=>contents(ll,s);

+7 RCCEPTED

prove +31

PROVING +3
nisuc,e:expr,sistate
|- contents(n,outcome (compile (suc(n),e),s))s>contents(n,s)

CURRENT GOAL:

m
n:suc,e:expr,sistate
|- contents (n,outcome (compile(suc(n),e),s))=contents(n,s)

SINPLIFIES TO:

TRUE
PROOF OF +3 RELATIVE TO THE RSSERTIONS:
+6
UNPROVED RULES: 46 +5 +4 +2 41
UNPROVED SYNTAX LEMWRS: -8 -7 -6 -5 -4 -3 -2 -1

qed;

prove +6;

PROVING +6

nlisuc,n2:suc,etexpr,sistate

#1 nl ¢ n2

|- contents(nl,outcome (compile(n2,e),8))e>contents(nl,s)

induct ¢ »!

NEW GOALS:

(1)
nlisuc,n2:suc,etexpr,sistate
#1 o 1 integer
2 nl ¢ n2
81 (ni'isuc,n2’i1suc,e’1expr,s’1state
fl e’ ce
2 nl’ ¢ n2’
|- contents(nl’ outcome (comp|le(n2’,e’),8’))e>contents(nl’,s’))
|- contents(nl,outcome (compile(n2,e),8))scontents(nl,s)

SINPLIFIES TO:

TRUE

[2)
nlisuc,n2:1suc,e1expr,sistate
fl ot atom

2 nl cn2

Page 123

A l4 Example 4: McCarthy-Painter Compiler for Expressions

&1 Inl’:suc,n2’:suc,e’1expr,s’:state

fl ¢’ co

22 nl’ c n2’

|- contents(nl’, outcome (compile(n2’,e’),s’))s>contents(ni’,s’))
|- contents(nl,outcome(compile(n2,e),s8))scontents(nl,s)

SINPLIFIES TO:
TRUE

(&)]
nlisuc,n2:suc,etexpr,sistate
#1 e : sum
#2 nl c n2
81 (n1’:suc,n2’i1suc,e’texpr,s’:state
fl e’ co
2 n1’ c n2’
|- contents(nl’,outcome (compile(n2’,e’),s’))s>contents(nl’,s’))
|- contents(nl,outcome(compllie(n2,e),s))scontents(ni,s)

SINPLIFIES TO«

TRUE

PROOF OF +68 RELATIVE TO THE RSSERTIONS:

+7 42 +1

UNPROVED RULES: 47 45 +4 42 ol

UNPROVED SYNTRX LEMMARS: -8 -7 -6 -5 -4 -3 -2 -}

qed;
prove +1;

PROVING +1
11 locname,nt integer ,sistate
|- contents(l,update(i,n,s))e>n

induct s »!

NEW GOALS:

1
I locname,n: integer s:state
#1 s : NIL
&1 [1’:11ocname,n’: integer,s’istate
fl s’ cs
|- contents(1’,update(i’,n’,s’))a>n’)
|- contents (!, ,update(l, n,s))=n

SINPLIFIES TO:
TRUE

(21
1t locname,n: Integer,sistate
#1 s : locations
&1 [1’:10cname,n’s integer,s’tstate
fl s’ cs
|- contents (1’ ,update (!’ n’,s’))e>n’)
|- contents(i,update(i n,s))en

SINPLIFIES TO:

s.other_locs:state,s. first_loc. locval: integer,s.first_loc. loc: locname
y 11 locname, n: integer
&1 [1’tlocname,n’tinteger,s’1state
#1 8’ c locations(location(s.first_loc. loc,s.first_loc. locval),

Page 124

-

A l4 Example 4: McCarthy-Painter Compiler for Expressions

s.other_locs)
|- contents (1’ ,update(i’,n’ s’))e>n’)
|- if | equals loc(first_loc(if s.first_loc.loc equals | then
locations(location(l,n),s.other_locs) eise locations(location(
s.first_loc.loc,s.first_loc. locval) ,update(i,n,s.other_locs))))
then locval(first_loc(if s.first_loc.loc equals | then locations
(location(i,n),s.other_locs) else locations(location(
s.first_loc. loc,s.*irst_loc. locval) ,update(l,n,s.other_locs))))
else contents(l,other_locs(i{ s.first_loc.loc equalis | then
locations (location(i,n),s.other_locs) else locations(location(
s.first_loc. loc,s.first_loc. locval),update(l,n,s.0ther_locs))))sn
1 GOALS REMRIN TO BE PROVED

CURRENT GOAL:
s.other_locs:state,s.first_loc. locval:integer,s.first_loc. loc: locname
s 12 locname,n: integer
&1 [1’:1ocname,n’: integer,s’:state
#1 8’ c locations(location(s.first_loc.loc,s.first_loc.locval),
s.other_locs) :
|- contents (1’ update(l’,n’ s’))=>n’]
|- 1f | equals loc(first_loc(if s.first_loc.loc equals | then
locations (location(l,n),s.other_locs) else locations(location(
s.first_loc.loc,s.first_loc.locval) update(i,n,s.other_locs))))
then locval(first_loc if s.first_loc.loc equals | then locations
(location(i,n),s.other_locs) else locations(location!(
s.tirst_loc.loc,s.first_loc. locval) ,update(l,n,s.0ther_locs))))
else contents (|, other_locs(if s.first_loc.loc equals | then
locations (location(l,n),s.other_locs) else locations(location(
s.first_loc.loc,s.first_loc. locval) ,update(i,n,s.other_locs))))=n

type s.first_loc. loc equals I!

NEW GOALS:

i
s.other_locs:state,s.first_loc. locvaliinteger,s.first_loc. loc: locname
» 11 locname,nt integer
#1 [s.first_loc.loc equals 1) :+ TRUE
&1 [I’11ocname,n’: integer,s’:state
#1 8’ c locations(location(s.tirst_loc.loc,s.first_loc. locval),
s.other_locs)
|- contents (1’ update(i’ ,n’ s’))e>n’)
|- 1f | equals loc(first_loc(if s.first_loc.loc equals | then
locations (location(l,n),s.other_locs) else locations(location(
s.first_loc. loc,s.first_loc. locval) ,update(l,n,s.0other_locs))))
then locval(first_loc(if s.first_loc.loc equals | then locations
(location(l,n),s.0ther_locs) else locations(location(
s.first_loc.loc,s.first_loc.locval) ,update(l,n,s.0ther_locs))))
else contents(l,other_locs(if s.first_loc. loc equals | then
locations (location(i,n),s.other_locs) elise locations(location(
s.tirst _loc.loc,s. tirst_loc. locval) ,update (i, n,s.0ther_locs))))en

SINPLIFIES T0:
TRUE

21

s.other_locsistate,s.first_loc. locvaltinteger,s. first_loc. loct locnane
» 11 locname,n: integer

#1 (s.first_loc.loc equals 1) : FALSE

&1 (1’1 1ocname,n’: integer,s’1state
#1 8’ c locations(location(s.tirst_loc.loc,s. tirst_loc. locval),

s.other_locs)

|- contents (1’ ,update(I’,n’,s’))s>n’)

|= 11) equals loc(first_loc(if s.first_loc.loc equals | then

Page 125

A l4 Example 4: McCarthy-Painter Compiler for Expressions

locations(location(i,n),s.other_locs) eise locations(locationt
s.first_loc.loc,s.first_loc. locval) ,update(! n,s.other_locs))))
then locval(first_loc(if s.first_loc.loc equals | then locations
(location(l,n),s.other_locs) else locations(location(
s.tirst_loc. loc,s. (irst_loc. locval) ,update(l,n,s.0ther_locs))))
else contents(l,other_locs(if s.first_loc.loc equais | then
locations(location(l,n), ,s.other_locs) else locations(location(
s.first_loc. loc,s.first_loc. locval) ,update(i,n,s.0ther_locs))))en

SINPLIFIES TO:

TRUE

PROOF OF +1

UNPROVED RULES: 47 +5 +4 22

UNPROVED SYNTRX LEMMAS: -8 -7 -6 -5 -4 -3 -2 -1

qed;

prove +2;

PROVING +2
clicode,c2:code,sistate
|- outcome (append(cl,c2),s)=>outcome (c2,outcome(cl,s))

induct cl !

NEW GOALS:

(n
clicode,c2:code,s:state
#1 ci : NIL
81 [cl’:code,c2’:code,s’:state
#l cl’ cecl
|- outcome (append(cl’,c2’),s’)=>outcome (c2’,outcome(cl’,s’)))
|- outcome (append(cl,c2),s)=outcome (c2,outcome(cl,s))

SINPLIFIES T0:
TRUE

[2)
cl:code,c2:code,s:state
#1 cl ¢ instrs
&1 (cl’:code,c2’:code,s’tstate
#l cl” cel
|- outcome (append(cl’,c2’'),s’)=>0utcome(c2’,outcomeicl’,s’)))
|- outcome (append (cl,c2),s)soutcome (c2,outcome (ci,s))

SINPLIFIES TO:

TRUE

PROOF OF +2

UNPROVED RULES: +7 +5 +4

UNPROVED SYNTRX LEMMAS: -8 -7 -6 -5 -4 -3 -2 -1

prove +4;

PROVING +4
etexpr,cicode,sistate
|- value(e,outcome(c,s))e>valuele,s)

Page 126

At dond s

NPy —

A l4 Example 4: McCarthy-Painter Comptler for Expressions

Induct ¢ »!

NEW GOALS:

(§)]
eiexpr,cicode,sistate
#1 ¢ : NIL
&1 (e’:expr,c’icode,s’tstate
#lc’ce
|- value(e’,outcome(c’,s’))s>valus(e’,s’)]
|- value(e,outcome(c,s))=valuele,s)

SINPLIFIES TO:
TRUE

121
e:eaxpr,c:code,s:state
#1 c : instrs
81 [e’:expr,c’icode,s’:state
#l1 c’ cc
|- value(e’,outcome(c’,»’))=>value(e’,s’))
|- value(e,outcome(c,s))=valuele,s)

SINPLIFIES TO:

c.other_instrsicode,c.first_instr:instr e:expr,sistate
&1 le’:expr,c’icode,s’:state
#1 ¢’ ¢ instrs(c.tfirst_instr c.other_instrs)
|- value(e’,outcomeic’,s’))n>valuele’,s’))
|- value(e,step(c.first_instr,s))avaiie(e,s)
1 GOALS REMAIN TO BE PROVED

CURRENT GOAL:
c.other_instrsicode,c.first_instriinstr etexpr,sistate
&1 le’:expr,c’icode,s’istate
#1 ¢’ c instrslc.first_instr c.other_instrs)
|- value(e’,outcome(c’,s’))s>value(e’,s’)]
|- value(e,step(c.tirst_instr,s))=valuele,s)

type c.first_instr!

NEN GOALS:

1
c.other_instrsicode,c.first_instr:instr etexpr,sistate
#1 c.first_instr 1 load
&1 (e’texpr,c’icode,s’1state
#1 ¢’ ¢ Instre(c.first_Instr c.other_instrs)
|- value(e’,outcome(c’,s’))u>valuvele’,s’))
|- value(e,step(c.first_instr,s))svaluele,s)

SINPLIFIES TO:
TRUE

(21
c.other_instrsicode,c.first_instriinstr,etexpr,sistate
#1 c.tirst_instr @ sto
81 le’1expr,c’icode,s’istate

#1 ¢’ c instrsie.first_instr,c.other_instrs)

|- value (e’ outcoms(ec’,s’))s>valuele’,s’))
|- valuel(e,steplc.tirst_instr,s))avalvele,s)

Page 127

A 14 © Example 4: McCarthy-Painter Compiler for Expressions

SINPLIFIES TO:
TRUE

[3)
c.other_instrs:code,c.first_instr:instr,etexpr,s:state
#1 c.first_instr : 1}
&1 (e’:expr,c’:code,s’:state

#1 ¢’ c instrs(c.first_instr,c.other_instrs)

|- value(e’,outcome(c’,s’))=>valuele’,s’))
|- value(e,step(c.first_instr,s))svalue(e,s)

SINPLIFIES TO:
TRUE

[4)
c.other_instrs:code,c.first_instr:instr,etexpr,sistate
#1l c.first_instr : add
81 [e’:texpr,c’icode,s’:state

#1 ¢’ c instrs(c.first_instr,c.other_instrs)

|- value(e’,outcome(c’,s’))=>valuele’,s’))
|- value(e,steplc.first_instr,s))=value(e,s)

SINPLIFIES TO:

TRUE
PROOF OF +4 RELATIVE TO THE RSSERTIONS:
45
UNPROVED RULES: +7 5
UNPROVED SYNTAX LEMMAS: -8 -7 -8 -5 -4 -3 -2 -}

qed;

prove +5;

PROVING +5
etexpr,ninatnum,v: integer,s:state
|- value(e,update(n,v,s))s>value(e,s)

Iinduct e !

NEN GOALS:

m
e:expr,n:natnum,v: integer,sistate
#1 & : integer
81 (e’:expr,n’tnatnum,v’:integer,s’:state
fl @’ ce
|- value(e’ ,update(n’,v’ s’))=>valuvele’,s’))
|- value(e,update(n,v,s))=value(e,s)

SINPLIFIES TO:
TRUE

21
e:expr,ninatnum,v: integer,s:state
#l o : atom
&1 (e’i1expr,n’inatnum,v’1integer,s’state
fl e’ ce
|- value (e’ ,update(n’,v’ ,s’))e>valuele’,s’))
|- value(e,update(n,v,s))avaluele,s)

A l4 Example 4: McCarthy-Painter Compiler for Expressions Page 129

SINPLIFIES TO:
TRUE

3]
eiexpr,ninatnum,vi integer,sistate
#1 @ &t sum
&1 [e’texpr,n’inatnum,v’sinteger,s’istate
fl e’ ce
|- value(e’,update(n’,v’ ,s’))=>value(e’,s’)]
|- value(e,update(n,v,s))svalue(e,s)

SINPLIFIES TO:

TRUE

PROOF OF +5 RELATIVE TO THE ASSERTIONS:

+7

UNPROVED RULES: +7

UNPROVED SYNTAX LEMMAS: -8 -7 -6 -5 -4 -3 -2 -1

qed;

prove +7;

PROVING +7

111 1ocname, 12: locname,ns integer,s:state

1 11212

|- contents(1],update(12,n,s))s=>contents(il,s)

Induct s +!

NEN GOALS:

8%
‘111 locname, 12: locname,n: Integer,s:state
#1 s : NIL
2 1112
81 [11’:1ocname, 12’1 locname,n’: integer,s’istate
18’ cs
2 11°=12’
|- contents (11’ ,updata (12’ ,n’,8’))ercontents(il’,s’)]
|- contents(11,update(12,n,s))scontents(il,s)

SINPLIFIES TO:
TRUE

21
11: locname, 12: locname,n: integer,s:state
#1 s : locations
2 11=12
&1 [11’:1ocname, 12’1 locname,n’: Integer,s’1state
18’ cs
” 11’012
|- contents (11’ ,update(12’,n’ s’))e>contents(il’ s’))
|- contents (11,update(i12,n,s))=contents(i],s)

SINPLIFIES TO0:

s.other_locs:state,s. first_loc. locvaliinteger,s.first_loc. loct locname
, 111 locname, 121 locname,n: integer

1 11=12

&1 (11’7t locname, 12’ locname,n’ 1 integer,s’ 1ntate

A l4 Example 4: McCarthy-Painter Compiler for Expressions

#1 s’ c locations(location(s.first_loc.loc,s.{irst_loc.locval),
s.other_locs)
n 11’'=12’
|- contents (11’ ,update(12*,n’,s’))=>contents (i1’ ,s’))
|- 1f 11 equals loc(first_loc(if s.first_loc.loc equals 12 then
locations (location(12,n),s.0ther_locs) eise locations(location(
s.first_loc.loc,s.first_loc.locval),update(i2,n,s.0ther_locs))))
then locval(first_loc(if s.first_loc.loc equals 12 then
locations(location(12,n),s.0ther_locs) else locations(location(
s.first_loc.loc,s.first_loc.locval),update(i12,n,s.0ther_locs))))
else contents(i],other_locs(if s.first_loc.loc equals 12 then
locations(location(12,n),s.0ther_locs) else locations(location(
s.first_loc.loc,s.first_loc.locval),update(i12,n,s.0ther_locs))))=
tf 11 squals s.tirst_loc.loc then s.first_loc.locval else
contents(11,s.0ther_locs)
1 GOALS REMARIN TO BE PROVED

CURRENT GOAL:
s.other_locs:state,s.first_loc.locvaliinteger s.first_loc. loc: locname
, 11t locname, 12t locname,n: integer
1 11=12
&1 [11’:1ocname,12’: locname,n’: integer,s’1state
#1 8’ ¢ locations(location(s.first_loc.lov,s.first_loc.iocval),
s.other_locs)
n 11'=12’
|- contents (11’ update(12’,n' s’'))=>contents(11’,s’))
|- 11 11 equals loc(first_loc(if s.first_loc.loc equals 12 then
locations (location(12,n) ,s.0ther_locs) eise locations(location(
s.first_loc.loc,s.first_loc.locval) ,update(12,n,s.0ther_locs))))
then locval (first_loc(if s.first_loc.loc equals 12 then
focations (location(i2,n),s.other_locs) #)se Jocations(location(
s.first_loc.loc,s.first_loc.iocval) ,update(i2,n,s.0ther_locs))))
else contents(ll,other_locs(if s.first_loc.loc equals 12 then
locations(location(12,n),s.other_locs) else locations(location(
s.first_loc.loc,s.first_loc. locval) ,update(12,n,s.0ther_locs))))a
11 1] equals s.first_loc.loc then s.first_loc.locval else
contents (11,s.0ther_locs)

type s.first_loc.!oc equals 12!

NEN GOALS:

m
s.other_locs:state,s. first_loc. locvaltinteger,s.first_loc. loc: locname
;111 1ocname, 121 locname,n: integer
#1 (s.{irst_ioc.loc equals 12) : TRUE
7 11=12
&1 [11’t1ocname, 12’1 locname,n’: integer,s’1state
#1 8’ c locations(location(s.first_loc.loc,s.first_loc.locval),
s.other_locs)
n 11'=12’
|- contents (11’ update(12’,n’,s’))=>contents(Il’,s’)])
|= 1f 11 equals locifirst_loc(if s.first_loc.loc equals 12 then
tocations(locationil2,n),s.other_locs) else locations(location(
s.first_loc. loc,s.first_loc. locval),update(12,n,s.0ther_locs))))
then iocval(first_loc(if s.first_loc.loc equals 12 then
locations(location(12,n),s.0ther_locs) else locations(location(
s.first_loc.loc,s.first_loc.locval),update(12,n,s.0ther_locs))))
else contents (il ,other_locs(if s.first_loc.loc equals 12 then
locations(location(12,n),s.0ther_locs) aise locations(location(
s.first_loc.loc,s.first_loc.locval) ,update(i2,n,s.0ther_locs))))e
if 11 equals s.first_loc.loc then s.first_loc.locval else
contents(il,s.other_locs)

SINPLIFIES TO:

Page 130

—

A 14 Example 4: McCarthy-Painter Compiler for Expressions

TRUE

(21
s.other_locs:state,s. first_ioc. locval:integer,s. first_loc. foc: locname
, 11t locname, 12t locname,n: integer
#1 (s.first_loc.loc equals 12) : FALSE
2 11=12
81 111’:1ocname, 12’1 1ocname,n’tinteger,s’1state
#1 s’ c locations(location(s.first_loc.loc,s.first_loc. locval),
s.other_locs)
2 11’=12°
|- contents (11’ ,update(12’,n’,s’))=>contents (11’ ,8’)]
|- if 11 equals loc(first_loc(if s.first_loc.loc equals 12 then
locations(location(12,n),s.0ther_locs) else locations(location(
s.first_loc.loc,s.first_loc. locval),update(12,n,s.0ther_locs))))
then locval(first_loc(if s.first_loc.loc equals 12 then
locations (location(12,n),s.0ther_locs) eise locations(iocation(
s.first_loc. loc,s.first_loc. locval),update(12,n,s.0ther_locs))))
else contents(l]l,other_locs(if s.first_loc.loc equals (2 then
locations (location(12,n),s.0ther_locs) else locations(location(
s.tirst_loc.loc,s.first_loc. locval) ,update(12,n,s.0ther_locs))))=
if 11 esquais s.first_loc.loc then s.first_loc.locval else
contents (11 ,s.0ther_lc:s)

SINPLIFIES TO:
TRUE
PROOF OF +7
UNPROVED SYNTAX LEMMAS: -8 -7 -6 -5 -4 -3 -2 -1

qed;

prove -1;
PROVING -1

x:code,y:code
|- append(x,y) : code

induct x!

* NEW GOALS:

m
xi1code,y:code
#1l x ¢ NIL
&1 [x':code,y’tcode
#l x’ cx
|- append(x’,y’) 1 code)
|- append(x,y) : code

SINPLIFIES TO:

TRUE

21
xtcode,ytcode
#1 x 1 instrs
&1 (x’icode,y’tcade
#1 %’ cx
|- append(x’,y’) 1 code)
|- append(x,y) 1 code

Page 181

|
i

A l4 Example 4: McCarthy-Painter Compiler for Expressions Page 132

SINPLIFIES T0:

TRUE
PROOF OF -1
UNPROVED SYNTRX LEMMAS: -8 -7 -8 -5 -4 -3 -2

qed;

prove -3;

PROVING -3
I: locname,s:state
|- contents(l,s) 1 integer

induct s!

NEW GOALS:

(1
I:locname,ststate
f1 s 1 NIL
&1 [1’:locname,s’ state
fls°cs
|- contents(1’,8’) : Integer)
|- contents(l,s) : Integer

SINPLIFIES T0:
TRUE

2)
It locname,sistate
f#1 s 1 locations
&1 (I1’:1ocname,s’1state
fls’ cs
|- contents(1’,8’) 1 iInteger])
|- contents(l,s) 1 Integer

SINPLIFIES T0:

TRUE
PROOF OF -3
UNPROVED SYNTAX LEMMAS: -8 -7 -6 -5 -4 -2

prove -4;

PROVING -4
Int locname, | vi Integer,s:state
|- update(in,iv,s) 1 state

Induct s!

NEW GOALS:

$0)

Int locname, Ivi Integer,ststate

f1 s @1 NIL

&1 Tin'tlocname, Iv'iinteger,e’1state
s cs

A l4 Example 4: McCarthy-Painter Compiler for Expressions

|- updatelin®,iv’,s’) : state)
|- update(in,iv,s) 1 state

SINPLIFIES TO:
TRUE

(21

In: locname, Ivi integer,sistate

#1 s : locations

&1 [In’:locname, Iv’s integer,s’istate
fls’cs
|- update(in’, iv’,s’) 1 state)

|- update(in,iv,s) : state

SINPLIFIES TO:

TRUE
PROOF OF -4
UNPROVED SYNTAX LEMMRS: -8 -7 -8 -5 -2

prove -5;

PROVING -5
Itinstr,ststate
|- step(i,s) : state

type |!

NEM GOALS:

(1)

itinstr,sistate

#1 1 : load

|- step(i,s) t state

SINPLIFIES TO:
TRUE

(21

Itinstr,sistate

f1 | s sto

|- stepli,s) t state

SINPLIFIES TO:
TRUE

3

liinstr,sistate
7141111

|- step(i,s) : state

SINPLIFIES TO:
TRUE
4
Itinstr,sistate

#1 1 1 add
|- step(i,s) 1 state

Page 133

A l4 Example 4: McCarthy-Painter Compiler for Expressions Page 134

SINPLIFIES TO:

TRUE
PROOF OF -5
UNPROVED SYNTRX LEMNAS: -8 -7 -8 -2

qed;

prove -6;

PROVING -6
cicode,s:state
|- outcome(c,s) : state

induct c!

NEH GOALS:

(§0]
ci:code,s:state
#1 c @ NIL
&1 ([c’tcode,s’tstate
flc’ce
|- outcome(c’,s’) : state)
|- outcome(c,s) : state

SINPLIFIES TO:
TRUE

(2)
cicode,ststate
#1 c : Iinstrs
&1 (c’:code,s’:state
flc’ce
|- outcome(c’,s’) 1 state)
|- outcome(c,s) : state

SINPLIFIES TO:
TRUE
PROOF OF -6
UNPROVED SYNTAX LENMRS: -8 -7 -2

qed;

prove -7;

PROVING -7
tcountisuc,esexpr
|- compile(tcount,e) 1 code

NEM GOALS:

m

tcountisuc, et expr

f#1 ¢ 1 Integer

&1 ([tcount’isuc,e’1expr

A l4 Example 4: McCarthy-Painter Compiler for Expressions Page 135

#l e’ ce
|- complie(ticount’,e’) 1 code)
|- complile(tcount,e) 1 code

SINPLIFIES TO:
TRUE

21
tcountisuc,etexpr
#1 o : atom
&1 [tcount’isuc,e’texpr
#l o’ co
|- compile(tcount’,e’) 1 code)
|- compile(tcount,e) : code

SINPLIFIES TO:
TRUE

3
tcountisuc,etexpr
#1 ¢ : sum
&1 (tcount’isuc,e’sexpr
fl e’ co
|- compile(tcount’,e’) : code)
|- compile(tcount,e) & code

SINPLIFIES TO:

TRUE
PROOF OF -7
UNPROVED SYNTRX LEMMAS: -8 -2

qed;

prove -8;

PROVING -8
e:expr,sistate
|- value(e,s) t Iinteger

induct e!

NEW GOARLS:

1)
etexpr,sistate
#1 ¢ 1 integer
€1 le’texpr,s’istate
#l o ceo
|- value(e’,s’) 1 Integer)
|- value(e,s) 1 Integer

SINPLIFIES TO:
TRUE

(2)
otexpr,sistate
71 ¢ & atom
&1 le’iexpr,s’istate
#l e’ co
|- value(e’,s’) t integer)

A l4 Example 4: McCarthy-Painter Compiler for Expressions

|- valuele,s) : integer
SINPLIFIES TO:
TRUE

(31
etexpr,sistate
fl ¢ : sum
&1 le’texpr,s’:state
7l e’ ce
|- value(e’,s’) : integer)
|- value(e,s) : integer

SINPLIFIES T0:
TRUE
PROOF OF -8
UNPROVED SYNTRX LEWMAS: -2

qed;

Page 136

Y TP ey P IR P e -

A2 Page 137

APPENDIX 2

TLV USER’S MANUAL

A 21 TLV Conventions

Before describing the commands accepted by the TYPED LISP Verifier, we need to define
some terminology and notation. All statements in TLV are divided into four parts:
. Variable declarations.
2. Quantifier-free hypotheses.
3. Induction hypotheses.
4. Conclusion.

A variable declaration is simply a formula of the form v : T where v is a variable and
T is a type name. Every free variable appearing anywhere in a statement must be declared.
The only statements which may contain induction hypotheses are the intermediate goals
generated in the course of a proof. To permit easy reference to a some part of a statement,
quantifier free hypotheses are labeled i, ¢2, .. and induction hypotheses are labeled &1, &2,
- At any intermediate point in a proof in TLYV, there is a list of goals which remain to be
proved. These goals are labeled x1, x2, .. Goal 1 is called the current goal.

Statements serving as theorems or lemmas are called assertions. TLV assigns every

assertion a unique assertion-name of the form en, -n, or +n where n is a positive integer and
the prefixes o, -, and + designate theorems, syntax lemmas, and user-specified lemmas,
respectively. Assertions are parsed by the verifier according to the following syntax.

assertion

y

——{ declarations 7 | conclusion }—s

Al el

A 21 TLYV Conventions
declarations
- variable t type-name
hypotheses
hypothesis
4 L

number

where each hypothesis is a formula and the conclusion is a formula rewrite pattern or an
expression rewrite pattern with the syntax:

expression rewrite pattern

_.T expression =) expression
i

i formula rewrite pattern

L — formula [formula |

!

significance.

In TLV, formulas have the form:

The command interpreter accepts labels of the form en preceding hypotheses so it can parse
assertions printed in the verifier's standard output format. They have no semantic

A 21 TLYV Conventions Page 139

- expression

expression
" J

— (» formula)

where the precedence of the operators in decreasing order of binding power is ~, A, v, >, =,
and the binary operators are right associative.

TLV commands which take formulas or expressions as arguments also accept specifiers
designating formulas or expressions in the current goal. Specifiers have the syntax:

specifier

+{ number -

operator

A specifier composed solely of numbers designates the formula or expression within the
current goal selected by the following rules. The first number of the sequence is a code
indicating which part of the goal contains the specified formula or expression. Zero indicates
the conclusion; a positive integer { indicates quantifier-free hypothesis oi. Each subsequent
number n (which must be positive) selects the nth operand of the currently selected formula
or expression. The final formula or expression selected is the one designated by the specifier.
A more useful form for a specifier includes an operator op naming the head operator of
the designated formula or expression (root of the standard syntax tree representation). The

A 21 TLV Conventions Page 140

formula or expression designated by the the specifier @ 0p n, . .. n, is the first formula or

expression with head operator op encountered in a left-to-right scan of the formula or
expression selected by the specifier e n, ... n,.

A 2.2 TLV User Commands

Now we are finally ready to discuss the commands accepted by the verifier. Each command
name may be abbreviated by any initial segment of the name which uniquely identifies the
command. In the following list of commands, the symbol bar (|), pointy-brackets (¢, >
)braces ({, }), and square brackets ([,)) are used as meta-symbols. Any symbol enclosed in
braces is optional. Symbols appearing within pointy-brackets and separated by bars are
mutually exclusive alternatives. The bar symbol also appears as a terminal symbol in the
prove command without ambiguity since no pointy brackets surround it. Finally, square
brackets denote the Kicene closure of the enclosed sequence of symbols. The commands
available in TLV are:

assume {s+} number G | D>
Function: makes goal xnumber into a rule.

consequence <formula | specifier> G | D
Function: applies the consequence rule to goal %1 using the specified formula.

clear ¢ | D>
Function: reinitializes the verifier.

delete [Aypothesis-number] [<induction-hypothesis-number] G | b
Function: applies the hypothesis deletion rule to the specified hypotheses.

disable [<function-name | assertion-name>) G | b
Function: disables the specified expansion rules and lemmas until the next prove or
enable command.

enable [<function-name | assertion-name>] G | b
Function: enables the specified expansion rules and lemmas if they were disabled.

equals <{s} number | formula | specifier> <+ | = {specifier} G |D
Function: applies the equals rule to the section of goal %1 indicated by specifier (if
omitted the entire goal is specified) using equality-hypothesis snumber or the new
hypothesis specified. The latter option also creates the extra goal of proving the
general-formula is a consequence of the goal hypotheses.

A 22 TLV User Commands Page 141

formula <formula | specifier> < | b
Function: performs a formula split on goal x| using the specified formula.

induct <expression | specifier> {<= | -»} ¢ | D
Function: applies the induction rule to goal %1 using the specified expression as the
induction term. The optional pattern-specifier (the symbol « or -) makes the
induction-hypothesis into an expression rule or formula rule directed in the specified
direction, if possible.

instantiate <assertion-name | & number>
[expression)
GIb
Function: applies the instantiation rule to goal %1 using the specified assertion and the
terms provided in the expression-list. Note: the expressions in the expression-list and
the final terminator (the symbol ; or 1) are entered in response to queries by the verifier.

list <assertion-class | assertion-name> < | >
Function: lists all assertions in the specified assertion-class or the single assertion
specified by assertion-name on the user’s terminal.

occurs {8} number | expression | specifier> <{#} number | expression | specifier> < | b
Function: applies the occurs rule to the two expressions indicated. The first expression
must be of the form t, c to and the second of the form fg © tq Where t,, to, tq are

terms.

program file-name G | b
Function: reads the program from the file file-namepg Note: the effect of reading
several programs without performing an intervening clear command is cumulative. No
previous definitions are destroyed.

prove assertion-name { | [assertion-name]} |
Function: initializes the goal-list to the single goal specified by assertion-name and
disables the rules specified by the assertion-names following the bar symbol (|). The
verifier automatically disables any rules depending on the selected assertion or a
disabled rule.

read file-name < | D
Function: reads commands from the file file-name.pf until an end-of-file <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>